EBV-positive and EBV-negative posttransplant lymphoproliferative disorders (PTLDs) arise in different immunovirological contexts and might have distinct pathophysiologies. To examine this hypothesis, we conducted a multicentric prospective study with 56 EBV-positive and 39 EBV-negative PTLD patients of the K-VIROGREF cohort, recruited at PTLD diagnosis and before treatment (2013-2019), and compared them to PTLD-free Transplant Controls (TC, n = 21). We measured absolute lymphocyte counts (n = 108), analyzed NK- and T cell phenotypes (n = 49 and 94), and performed EBV-specific functional assays (n = 16 and 42) by multiparameter flow cytometry and ELISpot-IFNγ assays (n = 50). EBV-negative PTLD patients, NK cells overexpressed Tim-3; the 2-year progression-free survival (PFS) was poorer in patients with a CD4 lymphopenia (CD4 <300 cells/mm , p <  .001). EBV-positive PTLD patients presented a profound NK-cell lymphopenia (median = 60 cells/mm ) and a high proportion of NK cells expressing PD-1 (vs. TC, p = .029) and apoptosis markers (vs. TC, p < .001). EBV-specific T cells of EBV-positive PTLD patients circulated in low proportions, showed immune exhaustion (p = .013 vs. TC) and poorly recognized the N-terminal portion of EBNA-3A viral protein. Altogether, this broad comparison of EBV-positive and EBV-negative PTLDs highlight distinct patterns of immunopathological mechanisms between these two diseases and provide new clues for immunotherapeutic strategies and PTLD prognosis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ajt.16547DOI Listing

Publication Analysis

Top Keywords

ebv-positive ebv-negative
8
ebv-negative posttransplant
8
posttransplant lymphoproliferative
8
lymphoproliferative disorders
8
ptld patients
8
distinct immunopathological
4
immunopathological mechanisms
4
mechanisms ebv-positive
4
disorders ebv-positive
4
disorders ptlds
4

Similar Publications

Post-transplant lymphoproliferative disorders (PTLD) and lymphomas in immunocompromised individuals represent significant clinical challenges, with a limited understanding of their pathogenesis. We investigated a PTLD cohort (n = 50) consisting of 'early lesions' (infectious mononucleosis-like PTLD, plasmacytic and follicular hyperplasias), polymorphic PTLD and post-transplant diffuse large B-cell lymphomas (PT-DLBCL). The study also included 15 DLBCL with autoimmune/immunocompromised backgrounds (IS-DLBCL) and 14 DLBCL, not otherwise specified (DLBCL, NOS), as control.

View Article and Find Full Text PDF

Introduction: Epstein-Barr virus (EBV) infection has been linked to cervical cancer (CC), but few have described the clinical and outcome features of patients with CC and EBV infection.

Methods: We conducted a single-center matched cohort study on 94 patients with CC. Real-time Polymerase chain reaction (RT-PCR) was used to detect (Epstein-Barr nuclear antigen 1) and (Latent membrane protein 1).

View Article and Find Full Text PDF

The advent of spatial transcriptomics and spatial proteomics have enabled profound insights into tissue organization to provide systems-level understanding of diseases. Both technologies currently remain largely independent, and emerging same slide spatial multi-omics approaches are generally limited in plex, spatial resolution, and analytical approaches. We introduce IN-situ DEtailed Phenotyping To High-resolution transcriptomics (IN-DEPTH), a streamlined and resource-effective approach compatible with various spatial platforms.

View Article and Find Full Text PDF

Background: A strong association between multiple sclerosis (MS) and Epstein-Barr virus (EBV) has been established but the exact role of EBV in MS remains controversial. Recently, molecular mimicry between EBNA1 and specific GlialCAM, CRYAB and ANO2 peptides has been suggested as a possible pathophysiological mechanism. The aim of this study was to analyse anti-EBV antibodies in MS patients against (I) EBV lifecycle proteins, (II) putative cross-reactive peptides, and (III) during treatment.

View Article and Find Full Text PDF

Dysregulated long non-coding RNA (lncRNA) expression is linked to various cancers and may be influenced by oncogenic Epstein-Barr virus (EBV) infection, a known and detectable risk factor in oral squamous cell carcinoma (OSCC) patients. However, research on the oncogenic role of EBV-induced lncRNAs in OSCC is limited. To identify lncRNA-associated EBV infection and OSCC carcinogenesis, the differential expression of RNA-seq datasets from paired normal adjacent and OSCC tissues, and microarray data from EBV-negative and EBV-positive SCC25 cells, were identified and selected, respectively, for interaction, functional analysis, and CCK-8 cell proliferation, wound healing, and invasion Transwell assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!