Protein aggregation is a common feature in prominent neurodegenerative diseases, usually thought to be due to the assembly of a single peptide or protein. Recent studies have challenged this notion and suggested several proteins may be involved in promoting and amplifying disease. For example, the TDP-43 protein associated with Amyotrophic Lateral Sclerosis has been found in the brain along with Aβ assemblies associated with Alzheimer's disease, and those patients that show the presence of TDP-43 are 10 times more likely to demonstrate cognitive impairment compared to TDP-43-negative Alzheimer's patients. Here we examine the interactions between the amyloidogenic core of TDP-43, TDP-43, and a neurotoxic physiologically observed fragment of Aβ, Aβ. Utilizing ion mobility mass spectrometry in concert with atomic force microscopy and molecular dynamics simulations, we investigate which oligomers are involved in seeding aggregation across these two different protein systems and gain insight into which structures initiate and result from these interactions. Studies were conducted by mixing Aβ with the toxic wild type TDP-43 peptide and with the nontoxic synthetic TDP-43 mutant, G314V. Our findings identify a strong catalytic effect of TDP-43 WT monomer in the acceleration of Aβ aggregation to its toxic cylindrin and β barrel forms. This observation is unprecedented in both its speed and specificity. Interestingly, the nontoxic G314V mutant of TDP-43 and dimers or higher order oligomers of WT TDP-43 do not promote aggregation of Aβ but rather dissociate preformed toxic higher order oligomers of Aβ. Reasons for these very different behaviors are reported.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.0c12729 | DOI Listing |
Alzheimers Dement
December 2024
University of Kentucky Sanders-Brown Center on Aging, Lexington, KY, USA.
Background: The presence of multiple comorbid pathologic features in late-onset dementia has been well documented across cohort studies that incorporate autopsy evaluation. It is likely that such mixed pathology potentially confounds the results of interventional trials that are designed to target a solitary pathophysiologic mechanism in Alzheimer's disease and related dementias (ADRD).
Method: The UK ADRC autopsy database was screened for participants who had previously engaged in therapeutic interventional trials for Alzheimer's disease, vascular cognitive impairment, dementia, and/or ADRD prevention trials from 2005 to the present.
Alzheimers Dement
December 2024
Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
Background: Some types of cancer have been associated with reduced risk of clinical dementia diagnosis. Whether cancer history may be associated with neuropathological features of neurodegeneration or cerebrovascular disease is not well understood. We investigated the relation between cancer diagnosis and brain pathology in a sample of community-based research volunteers enrolled in an Alzheimer's Disease Research Center (ADRC) cohort.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
UCSF Weill Institute for Neurosciences, San Francisco, CA, USA.
Background: Efforts to genetically reverse C9orf72 pathology have been hampered by our incomplete understanding of the regulation of this complex locus.
Method: We generated five different genomic excisions at the C9orf72 locus in a patient-derived iPSC line and a WT line (11 total isogenic lines), and examined gene expression and pathological hallmarks of C9 FTD/ALS in motor neurons differentiated from these lines. Comparing the excisions in these isogenic series removed the confounding effects of different genomic backgrounds and allowed us to probe the effects of specific genomic changes.
Background: TAR-DNA-binding protein 43 (TDP43), is a pathologic marker in neurodegenerative diseases including frontotemporal lobar degeneration and amyotrophic lateral sclerosis. The aggregation of TDP-43, a crucial RNA-binding protein, is a consequence of post-translational modifications (PTMs) that disrupt its normal function. PTMs such as phosphorylation and ubiquitination contribute to the aberrant accumulation of TDP-43 aggregates, leading to neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
Background: Protein misfolding is a key pathological phenomenon driving neurodegenerative diseases that affect millions of people. Visualizing this misfolding process with smart imaging probes would greatly facilitate early diagnosis, etiology elucidation, disease progression monitoring, and drug discovery of neurodegeneration. Although numerous probes have been reported, several unmet needs still exist.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!