A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

On kernel machine learning for propensity score estimation under complex confounding structures. | LitMetric

AI Article Synopsis

  • Post-marketing data can provide valuable insights for doctors and policymakers, but analyzing these complex observational data poses significant challenges due to confounding variables and the sheer volume of data.
  • The paper presents a new propensity score approach that utilizes kernel-based machine learning, allowing for flexible modeling that effectively addresses these confounding structures.
  • Additionally, a split-and-merge algorithm is introduced to streamline computations, and the method has shown superior performance compared to existing techniques in tests, including an analysis of postoperative pain data.

Article Abstract

Post marketing data offer rich information and cost-effective resources for physicians and policy-makers to address some critical scientific questions in clinical practice. However, the complex confounding structures (e.g., nonlinear and nonadditive interactions) embedded in these observational data often pose major analytical challenges for proper analysis to draw valid conclusions. Furthermore, often made available as electronic health records (EHRs), these data are usually massive with hundreds of thousands observational records, which introduce additional computational challenges. In this paper, for comparative effectiveness analysis, we propose a statistically robust yet computationally efficient propensity score (PS) approach to adjust for the complex confounding structures. Specifically, we propose a kernel-based machine learning method for flexibly and robustly PS modeling to obtain valid PS estimation from observational data with complex confounding structures. The estimated propensity score is then used in the second stage analysis to obtain the consistent average treatment effect estimate. An empirical variance estimator based on the bootstrap is adopted. A split-and-merge algorithm is further developed to reduce the computational workload of the proposed method for big data, and to obtain a valid variance estimator of the average treatment effect estimate as a by-product. As shown by extensive numerical studies and an application to postoperative pain EHR data comparative effectiveness analysis, the proposed approach consistently outperforms other competing methods, demonstrating its practical utility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670098PMC
http://dx.doi.org/10.1002/pst.2105DOI Listing

Publication Analysis

Top Keywords

complex confounding
16
confounding structures
16
propensity score
12
machine learning
8
observational data
8
comparative effectiveness
8
effectiveness analysis
8
average treatment
8
treatment estimate
8
variance estimator
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: