Bone metabolism subgroups identified as hip fracture patients via clustering.

Hormones (Athens)

Hellenic Osteoporosis Foundation, Athens, Greece.

Published: September 2021

Purpose: The aim of the study was to describe the bone metabolism status that underlies a hip fracture.

Methods: Estimated glomerular filtration rate (e-GFR), calcium (Ca), phosphorus (P), total (ALP) and bone specific alkaline phosphatase (b-ALP), intact parathyroid hormone (i-PTH), 25-hydroxy-vitamin D (25OHD), total procollagen type I amino-terminal propeptide (PINP), and N-terminal peptide of collagen I (NTx), measured at admission in 272 hip fracture patients, were ex post analyzed by K-means clustering and principal component analysis and were evaluated by a clinician.

Results: Four components, mainly consisting of b-ALP, PINP, ALP, and NTx; e-GFR and P; i-PTH and 25OHD; and Ca explained about 70% of the variability. A total of 184 patients clustered around a centroid (A) with low 25OHD (13.2 ng/ml), well-preserved kidney function (e-GFR=67.19 ml/min/1.73m), normal Ca, P, i-PTH and bone markers, with the exception of slightly increased NTx (24.82nMBCE). Cluster B (n=70) had increased i-PTH (93.38 pg/ml), moderately decreased e-GFR, very low 25OHD (8.68 ng/dl), and high bone turnover (b-ALP 28.46 U/L, PINP 69.87 ng/ml, NTx 31.3nMBCE). Cluster C (n=17) also had hyperparathyroidism (80.35 pg/ml) and hypovitaminosis D (9.15 ng/ml), low e-GFR(48.89 ml/min/1.73m), and notably high ALP (173 U/L) and bone markers (b-ALP 44.64 U/L, PINP 186.98 ng/ml, NTx 38.28nMBCE). According to the clinician, 62 cases clearly had secondary hyperparathyroidism.

Conclusions: Based on serum measurements, the dominant patterns of bone metabolism were normal bone turnover with high normal NTx, and secondary hyperparathyroidism related to chronic kidney disease and hypovitaminosis D. The bone formation markers, e-GFR, NTx, and P composed the most important factors.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s42000-021-00276-4DOI Listing

Publication Analysis

Top Keywords

bone metabolism
12
bone
9
hip fracture
8
fracture patients
8
low 25ohd
8
bone markers
8
bone turnover
8
u/l pinp
8
ntx
6
metabolism subgroups
4

Similar Publications

Self-Cascade of ROS/Glucose-Scavenging Immunomodulatory Hydrogels for Programmed Therapeutics of Infected Diabetic Ulcers via Nrf2/NF-κB Pathway.

Small

January 2025

Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.

Diabetic ulcers (DUs) are characterized by a microenvironment with high oxidative stress, high blood glucose levels, and recalcitrant bacterial infections. This microenvironment is accompanied by long-term suppression of endogenous antioxidant systems, which makes their clinical management extremely challenging. To address this issue, a hybridized novel gold-palladium (AuPd) nanoshell of the injectable/injectable hydrogel system UiO/AuPd/BNN6/PEG@Gel (UAPsBP@Gel) is developed.

View Article and Find Full Text PDF

Background: Gaucheromas, pseudotumors composed of Gaucher cells, are rare complications of Gaucher's Disease (GD). They are usually seen in patients receiving enzyme replacement. Surgery is generally not recommended for these benign masses in treatment management.

View Article and Find Full Text PDF

Diseases affecting bone encompass a spectrum of disorders, from prevalent conditions such as osteoporosis and Paget's disease, collectively impacting millions, to rare genetic disorders including Fibrodysplasia Ossificans Progressiva (FOP). While several classes of drugs, such as bisphosphonates, synthetic hormones, and antibodies, are utilized in the treatment of bone diseases, their efficacy is often curtailed by issues of tolerability and high incidence of adverse effects. Developing therapeutic agents for bone diseases is hampered by the fact that numerous pathways regulating bone metabolism also perform pivotal functions in other organ systems.

View Article and Find Full Text PDF

Berardinelli-Seip congenital lipodystrophy (BSCL), also known as congenital generalized lipodystrophy (CGL), is an exceptionally rare autosomal recessive disorder marked by a significant deficiency of adipose tissue throughout the body. This lack of adipose tissue, normally found beneath the skin and between internal organs, leads to impaired adipocyte formation and fat storage, causing lipids to accumulate in atypical tissues such as muscles and the liver. The extent of adipose tissue loss directly influences the severity of symptoms, which can include a muscular appearance, increased appetite, bone cysts, marrow fat depletion, acromegalic features, severe insulin resistance, skeletal muscle hypertrophy, hypertrophic cardiomyopathy, hepatic steatosis, hepatomegaly, cirrhosis, and intellectual disability.

View Article and Find Full Text PDF

Cell-laden, scaffold-based tissue engineering methods have been successfully utilized for the treatment of bone fractures. In such methods, the rate of scaffold biodegradation, transport of nutrients, and removal of cell metabolic wastes are critical fluid-dynamics factors, affecting tissue regeneration. Therefore, there is a critical need to identify the underlying material transport mechanisms associated with stem cell-driven, scaffold-based bone tissue regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!