TWIST1 preserves hematopoietic stem cell function via the CACNA1B/Ca2+/mitochondria axis.

Blood

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Tianjin, China.

Published: May 2021

Mitochondria of hematopoietic stem cells (HSCs) play crucial roles in regulating cell fate and preserving HSC functionality and survival. However, the mechanism underlying HSC regulation remains poorly understood. Here, we identify transcription factor TWIST1 as a novel regulator of HSC maintenance through modulation of mitochondrial function. We demonstrate that Twist1 deletion results in significantly decreased lymphoid-biased HSC frequency, markedly reduced HSC dormancy and self-renewal capacity, and skewed myeloid differentiation in steady-state hematopoiesis. Twist1-deficient HSCs are more compromised in tolerance of irradiation- and 5-fluorouracil-induced stresses and exhibit typical phenotypes of senescence. Mechanistically, Twist1 deletion induces transactivation of voltage-gated calcium channel (VGCC) Cacna1b, which exhausts lymphoid-biased HSCs, impairs genotoxic hematopoietic recovery, and enhances mitochondrial calcium levels, metabolic activity, and reactive oxygen species production. Suppression of VGCC by a calcium channel blocker largely rescues the phenotypic and functional defects in Twist1-deleted HSCs under both steady-state and stress conditions. Collectively, our data, for the first time, characterize TWIST1 as a critical regulator of HSC function acting through the CACNA1B/Ca2+/mitochondria axis and highlight the importance of Ca2+ in HSC maintenance. These observations provide new insights into the mechanisms for the control of HSC fate.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood.2020007489DOI Listing

Publication Analysis

Top Keywords

hematopoietic stem
8
cacna1b/ca2+/mitochondria axis
8
hsc
8
regulator hsc
8
hsc maintenance
8
twist1 deletion
8
calcium channel
8
twist1
5
twist1 preserves
4
preserves hematopoietic
4

Similar Publications

Diabetes Risk After Treatment for Childhood and Young Adult Cancer.

Diabetes Care

January 2025

Clinical Population and Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, U.K.

Objective: Diabetes is a potential late consequence of childhood and young adult cancer (CYAC) treatment. Causative treatments associated with diabetes have been identified in retrospective cohort studies but have not been validated in population-based cohorts. Our aim was to define the extent of diabetes risk and explore contributory factors for its development in survivors of CYAC in the United Kingdom.

View Article and Find Full Text PDF

Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks.

View Article and Find Full Text PDF

Measurable residual disease (MRD) is a powerful predictor of clinical outcomes in acute lymphoblastic leukemia (ALL). In addition to its clear prognostic importance, MRD information is increasingly used in clinical decision algorithms to guide therapeutic interventions. While it is well-established that achievement of MRD-negative remission is an important endpoint of ALL therapy, the prognostic and therapeutic implications of MRD in an individual patient are influenced by both disease-related factors (e.

View Article and Find Full Text PDF

Gut dysbiosis is linked to mortality and the development of graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation (HSCT), but the impact of cutaneous dysbiosis remains unexplored. We performed a pilot observational study and obtained retroauricular and forearm skin swabs from 12 adult patients prior to conditioning chemotherapy/radiation, and at 1-week, 1-month and 3-months after allogeneic HSCT, and performed shotgun metagenomic sequencing. The cutaneous microbiome among HSCT patients was enriched for gram-negative bacteria such as E coli and Pseudomonas, fungi, and viruses.

View Article and Find Full Text PDF

Results following hematopoietic stem cell transplantation (HSCT) for TP53-mutated myeloid malignancies are disappointing. Several HSCT centers decline to perform HSCT for patients with TP53 mutation because of poor outcomes. In this study, we analyzed 240 patients with TP53-mutated myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) that underwent HSCT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!