Abstract: Molecular dynamics (MD) simulations are a widely used technique in modeling complex nanoscale interactions of atoms and molecules. These simulations can provide detailed insight into how molecules behave under certain environmental conditions. This work explores a machine learning (ML) solution to predicting long-term properties of SARS-CoV-2 spike glycoproteins (S-protein) through the analysis of its nanosecond backbone RMSD (root-mean-square deviation) MD simulation data at varying temperatures. The simulation data were denoised with fast Fourier transforms. The performance of the models was measured by evaluating their mean squared error (MSE) accuracy scores in recurrent forecasts for long-term predictions. The models evaluated include k-nearest neighbors (kNN) regression models, as well as GRU (gated recurrent unit) neural networks and LSTM (long short-term memory) autoencoder models. Results demonstrated that the kNN model achieved the greatest accuracy in forecasts with MSE scores over around 0.01 nm less than those of the GRU model and the LSTM autoencoder. Furthermore, it demonstrated that the kNN model accuracy increases with data size but can still forecast relatively well when trained on small amounts of data, having achieved MSE scores of around 0.02 nm when trained on 10,000 ns of simulation data. This study provides valuable information on the feasibility of accelerating the MD simulation process through training and predicting supervised ML models, which is particularly applicable in time-sensitive studies.
Graphic Abstract: SARS-CoV-2 spike glycoprotein molecular dynamics simulation. Extraction and denoising of backbone RMSD data. Evaluation of k-nearest neighbors regression, GRU neural network, and LSTM autoencoder models in recurrent forecasting for long-term property predictions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7888691 | PMC |
http://dx.doi.org/10.1557/s43580-021-00021-4 | DOI Listing |
Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.
View Article and Find Full Text PDFReprod Biol Endocrinol
January 2025
Department of Molecular and Developmental Medicine, Siena University, Siena, 53100, Italy.
Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).
View Article and Find Full Text PDFSci Rep
January 2025
College of Environment and Bioengineering, Henan University of Engineering, Zhengzhou, 451191, China.
This study aims to explore the mechanism behind the influence of stress on gas adsorption by coal during deep mining and improve the accuracy of gas disaster prevention and control. To achieve this aim, thermodynamic analysis was conducted on the process of gas adsorption by loaded coal, and modified thermodynamic model proposed by previous scholars. It is found that stress plays an important role in gas adsorption by coal.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pathology, Division of Microbiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375, Wroclaw, Poland.
The process of viral entry into host cells is crucial for the establishment of infection and the determination of viral pathogenicity. A comprehensive understanding of entry pathways is fundamental for the development of novel therapeutic strategies. Standard techniques for investigating viral entry include confocal microscopy and flow cytometry, both of which provide complementary qualitative and quantitative data.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.
Roaming reactions involving a neutral fragment of a molecule that transiently wanders around another fragment before forming a new bond are intriguing and peculiar pathways for molecular rearrangement. Such reactions can occur for example upon double ionization of small organic molecules, and have recently sparked much scientific interest. We have studied the dynamics of the [Formula: see text]-roaming reaction leading to the formation of [Formula: see text] after two-photon double ionization of ethanol and 2-aminoethanol, using an XUV-UV pump-probe scheme.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!