Since the worldwide outbreak of the infectious disease COVID-19, several studies have been published to understand the structural mechanism of the novel coronavirus SARS-CoV-2. During the infection process, the SARS-CoV-2 spike (S) protein plays a crucial role in the receptor recognition and cell membrane fusion process by interacting with the human angiotensin-converting enzyme 2 (hACE2) receptor. However, new variants of these spike proteins emerge as the virus passes through the disease reservoir. This poses a major challenge for designing a potent antigen for an effective immune response against the spike protein. Through a normal mode analysis (NMA) we identified the highly flexible region in the receptor binding domain (RBD) of SARS-CoV-2, starting from residue 475 up to residue 485. Structurally, the position S477 shows the highest flexibility among them. At the same time, S477 is hitherto the most frequently exchanged amino acid residue in the RBDs of SARS-CoV-2 mutants. Therefore, using MD simulations, we have investigated the role of S477 and its two frequent mutations (S477G and S477N) at the RBD during the binding to hACE2. We found that the amino acid exchanges S477G and S477N strengthen the binding of the SARS-COV-2 spike with the hACE2 receptor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7900180PMC
http://dx.doi.org/10.1038/s41598-021-83761-5DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 spike
12
spike protein
12
plays crucial
8
crucial role
8
hace2 receptor
8
amino acid
8
s477g s477n
8
sars-cov-2
6
spike
5
receptor
5

Similar Publications

A broadly neutralizing antibody against the SARS-CoV-2 Omicron sub-variants BA.1, BA.2, BA.2.12.1, BA.4, and BA.5.

Signal Transduct Target Ther

January 2025

NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.

The global spread of Severe Acute Respiratory Syndrome Coronavirus 2. (SARS-CoV-2) and its variant strains, including Alpha, Beta, Gamma, Delta, and now Omicron, pose a significant challenge. With the constant evolution of the virus, Omicron and its subtypes BA.

View Article and Find Full Text PDF

Monocytic reactive oxygen species-induced T cell apoptosis impairs cellular immune response to SARS-CoV-2 mRNA vaccine.

J Allergy Clin Immunol

January 2025

Institute of Human Genetics, UMR9002, CNRS and Montpellier University; Montpellier, France; Montpellier University; Montpellier, France; Immunology Department, University Hospital; Nîmes, France. Electronic address:

Background: We have recently shown that, during acute severe COVID-19, SARS-CoV-2 spike protein (S) induces a cascade of events resulting in T cell apoptosis. Indeed, by neutralizing the protease activity of its receptor, ACE2, S induces an increase in circulating Angiotensin II (AngII), resulting in monocytic release of reactive oxygen species (ROS) and programmed T cell death.

Objective: Here, we tested whether SARS-CoV-2 mRNA vaccines, known to cause the circulation of the vaccine antigen, S-protein receptor binding domain (RBD), might trigger the same cascade.

View Article and Find Full Text PDF

Structural and Functional Glycosylation of the Abdala COVID-19 Vaccine.

Glycobiology

January 2025

Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, OX1 3QU, United Kingdom.

Abdala is a COVID-19 vaccine produced in Pichia pastoris and is based on the receptor-binding domain (RBD) of the SARS-CoV-2 spike. Abdala is currently approved for use in multiple countries with clinical trials confirming its safety and efficacy in preventing severe illness and death. Although P.

View Article and Find Full Text PDF

Individual patient and donor seroprofiles in convalescent plasma treatment of COVID-19 in REMAP-CAP clinical trial.

J Infect

January 2025

Radcliffe Department of Medicine and BRC Haematology Theme, University of Oxford, Oxford, UK; Microbiology Services, NHS Blood and Transplant, Colindale, UK; Infection and Immunity, University College of London, London, UK.

Objectives: Convalescent plasma (CP) treatment of COVID-19 has shown significant therapeutic effect only when administered early. We investigated the importance of patient and CP seroprofiles on treatment outcome in REMAP-CAP CP trial.

Methods: We evaluated neutralising antibodies (nAb), anti-spike (S) IgM, IgG, IgG avidity, IgG fucosylation and respiratory viral loads in a sub-set of patients (n=80) and controls (n=51) before and after transfusion, comparing them to those in the CP units (n=157) they received.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) is a fatal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, several vaccines have been developed to combat the spread of this virus. Mucosal vaccines using food-grade bacteria, such as Lactobacillus spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!