A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Relative performance of different data mining techniques for nitrate concentration and load estimation in different type of watersheds. | LitMetric

The increasing availability of water quality datasets has led to a greater focus on hydrologic and water quality analysis, thus requiring more efficient and accurate modelling methods. Data mining techniques have been increasingly used for water quality analysis and prediction of the concentration and load of nitrogen pollutants instead of more traditional simulation methods. In this study, we tested the multilayer perceptron (MLP), k-nearest neighbor (k-NN), random forest, and reduced error pruning tree (REPTree) methods, along with the traditional linear regression, to predict nitrate levels based on long-term data from six watersheds with different land-use practices in the midwestern United States. Both the concentration and load results indicated that REPTree had the best performance, with an R of 0.61-0.85 and a relative absolute error of <75.8%. The different watershed types, however, influenced the performance of the data mining methods, where all four methods showed a higher accuracy for urban dominant watershed and lower accuracy for agricultural and forest watersheds. Out of these four methods, classification tree methods (REPTree and RF) performed better than cluster methods (MLP and k-NN) for agricultural and forested watersheds. Our results indicated that both the data structure based on the dominant land use and type of algorithmic method should be carefully considered for selecting a data mining method to predict nitrate concentration and load for a watershed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.114618DOI Listing

Publication Analysis

Top Keywords

concentration load
12
water quality
12
data mining
8
mining techniques
8
quality analysis
8
relative performance
4
performance data
4
techniques nitrate
4
nitrate concentration
4
load estimation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!