A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Projection of ship emissions and their impact on air quality in 2030 in Yangtze River delta, China. | LitMetric

China has been in the implementation phase of Domestic Ship Emission Control Areas (DECAs) regulation to reduce emissions of air pollutants from ships near populated areas since 2016. The Yangtze River Delta (YRD) is one of the busiest port clusters in the world, accounting for 11% of global seaborne cargo throughput, so future improvements in shipping emission controls may still be important in this region. To assess the impact of future ship emissions on air quality of coastal areas, this study evaluates emissions reductions and air quality in 2030 for three scenarios (business as usual, stricter regulations, and aspirational policies) representing increasing levels of control compared with a base year of 2015. We projected ship emissions in the region using a bottom-up approach developed in this study and based on the historical ship automatic identification system (AIS) activity data. We then predicted air quality across the YRD region in 2030 using the Community Multiscale Air Quality (CMAQ) model. The annual average contributions of ship emissions to ambient PM would decrease by 70.9%, 80.4%, and 86.2% relative to 2015 under the three scenarios, with the largest reductions of more than 4.1 μg/m near Shanghai Port under the aspirational scenario. Reductions in ship emissions generally led to lower levels of PM, particularly in most of the coastal cities in the YRD. Compared with a business-as-usual approach the aspirational scenario reduced SO, NO and PM concentrations from shipping by 71.8%, 61.1% and 52.5%, respectively. It was also more effective than the stricter regulation scenario, suggesting that the requirement to use 0.1% sulfur fuel within a 100Nm DECA would have additional benefits to ambient PM concentrations beyond 12Nm DECA area. This study provides evidence to inform deliberations on the potential air quality benefits of future control policies for ship emissions in China.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.114643DOI Listing

Publication Analysis

Top Keywords

ship emissions
24
air quality
24
emissions
8
quality 2030
8
yangtze river
8
river delta
8
emissions air
8
three scenarios
8
aspirational scenario
8
air
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!