In this work we adapt rare-earth-ion-doped NaYFnanoparticles coated with a silicon oxide shell (NaYF:20%Yb,0.2%Tm@SiO) for biological and medical applications (for example, imaging of cancer cells and therapy at the nano level). The wide upconversion emission range under 980 nm excitation allows one to use the nanoparticles for cancer cell (4T1) photodynamic therapy (PDT) without a photosensitizer. The reactive oxygen species (ROS) are generated by Tm/Yb ion upconversion emission (blue and UV light). ThePDT was tested on 4T1 cells incubated with NaYF:20%Yb,0.2%Tm@SiOnanoparticles and irradiated with NIR light. After 24 h, cell viability decreased to below 10%, demonstrating very good treatment efficiency. High modification susceptibility of the SiOshell allows for attachment of biological molecules (specific antibodies). In this work we attached the anti-human IgG antibody to silane-PEG-NHS-modified NaYF:20%Yb,0.2%Tm@SiOnanoparticles and a specifically marked membrane model by bio-conjugation. Thus, it was possible to perform a selective search (a high-quality optical method with a very low-level organic background) and eventually damage the targeted cancer cells. The study focuses on therapeutic properties of NaYF:20%Yb,0.2%Tm@SiOnanoparticles and demonstrates, upon biological functionalization, their potential for targeted therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/abe892 | DOI Listing |
J Am Chem Soc
January 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature.
View Article and Find Full Text PDFJ Med Chem
January 2025
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
The hypoxic environment of solid tumors significantly diminishes the therapeutic efficacy of oxygen-dependent photodynamic therapy. Developing efficient photosensitizers that operate photoredox catalysis presents a promising strategy to overcome this challenge. Herein, we report the rational design of two rhenium(I) tricarbonyl complexes ( and ) with electron donor-acceptor-donor configuration.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China.
Gram-positive bacteria pose significant threats to human health, necessitating the development of targeted bacterial detection and eradication strategies. Nevertheless, current approaches often suffer from poor targeting specificity. Herein, the study utilizes purple rice lixivium to synthesize biomass carbon dots (termed BCDs) with wheat germ agglutinin-like residues for precisely targeting Gram-positive bacteria.
View Article and Find Full Text PDFChemistry
January 2025
Qinghai University, College of Chemistry, CHINA.
Mechanofluorochromism (MFC) and mechanoluminescence (ML) materials have garnered significant attention from researchers due to their potential applications in anti-counterfeiting, optical recording, photodynamic therapy, bioimaging, stress sensing, display technology, and ink-free printing paper. Among the various building blocks utilized in these materials, phenothiazine (PTZ) has emerged as a widely employed fundamental component owing to its distinctive electronic and optical properties as well as its facile modification capabilities. Summarizing the recent progress of PTZ derivatives and analogues in this field holds practical significance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Ultrasound, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400010, China.
: Photodynamic therapy (PDT) has emerged as a promising treatment for cancer, primarily due to its ability to generate reactive oxygen species (ROS) that directly induce tumor cell death. However, the hypoxic microenvironment commonly found within tumors poses a significant challenge by inhibiting ROS production. This study aims to investigate the effect of improving tumor hypoxia on enhancing PDT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!