Due to the limited self-healing ability of natural cartilage, several tissue engineering strategies have been explored to develop functional replacements. Still, most of these approaches do not attempt to recreate in vitro the anisotropic organization of its extracellular matrix, which is essential for a suitable load-bearing function. In this work, different depth-dependent alignments of polycaprolactone-gelatin electrospun fibers were assembled into three-dimensional scaffold architectures to assess variations on chondrocyte response under static, unconfined compressed and perfused culture conditions. The in vitro results confirmed that not only the 3D scaffolds specific depth-dependent fiber alignments potentiated chondrocyte proliferation and migration towards the fibrous systems, but also the mechanical stimulation protocols applied were able to enhance significantly cell metabolic activity and extracellular matrix deposition, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2021.104373DOI Listing

Publication Analysis

Top Keywords

cartilage tissue
8
tissue engineering
8
scaffolds specific
8
specific depth-dependent
8
depth-dependent fiber
8
fiber alignments
8
mechanical stimulation
8
extracellular matrix
8
boosting vitro
4
vitro cartilage
4

Similar Publications

CPR related injuries of the chest wall: direct and indirect fractures.

Eur J Trauma Emerg Surg

January 2025

Department of Trauma and Orthopedic Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.

Background: Rib and sternum fractures are common injuries associated with cardiopulmonary resuscitation (CPR). The fracture mechanism is either direct by application of force on sternum and anterior ribs or indirect by bending through compression of the thorax. The aim of this study was to determine morphologies of rib fractures after CPR and to reevaluate prior findings on fracture localisation, type and degree of dislocation.

View Article and Find Full Text PDF

Knee osteoarthritis (KOA) represents a progressive degenerative disorder characterized by the gradual erosion of articular cartilage. This study aimed to develop and validate biomarker-based predictive models for KOA diagnosis using machine learning techniques. Clinical data from 2594 samples were obtained and stratified into training and validation datasets in a 7:3 ratio.

View Article and Find Full Text PDF

Calcified chondroid mesenchymal neoplasm: a clinicopathological and molecular analysis.

J Clin Pathol

January 2025

Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China

Aims: Calcified chondroid mesenchymal neoplasm (CCMN) is a recently identified category of soft tissue neoplasms defined by cartilage or cartilaginous matrix formation and gene fusions. Its rarity and similarities to other soft tissue tumours pose diagnostic challenges. This study aims to deepen understanding of CCMN, highlighting molecular pathology's role in diagnosis to reduce misdiagnosis, overdiagnosis and overtreatment.

View Article and Find Full Text PDF

Cartilage repair remains a formidable challenge because of its limited regenerative capacity. Construction of a biomimetic hydrogel matrix that can induce cell aggregation is a promising therapeutic option. Cell aggregates are more beneficial than dissociated cells for improving survival and chondrogenic differentiation, thereby facilitating cartilage repair.

View Article and Find Full Text PDF

Effects of dioscin from Dioscorea nipponica on TL1A/DR3 and Th9 cells in a collagen-induced arthritis mouse model.

Int Immunopharmacol

January 2025

Department of Anatomy, Basic Medical Institute, Chengde Medical University, Chengde 067000 Hebei, China. Electronic address:

Rheumatoid arthritis (RA) is a systemic autoimmune disease, and TL1A and its receptor DR3 play important roles in its pathogenesis. Th9 cells are involved in RA development. Dioscin from Dioscorea nipponica (DDN) has a therapeutic effect on RA, but its effect on TL1A/DR3 and Th9 cells remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!