Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A major obstacle for using human pluripotent stem cells (hPSCs) derived vascular cells for cell therapy is the lack of simple, cost-saving, and scalable methods for cell production. Here we described a simplified and chemically defined medium (AATS) for endothelial cells (ECs) and smooth muscle cells (SMCs) differentiation. AATS medium does not contain insulin, enabling the rapid and highly efficient vascular mesoderm formation through accelerating metabolic and autophagy-enhanced mesoderm induction. Transcriptome profiling confirmed that hPSC-derived ECs and SMCs in the AATS medium closely resembled primary ECs and SMCs formed in vivo. ECs appeared to adhere and grow better in the AATS medium over other cell types, which allowed the purification of CD31CD144 double-positive cells. Furthermore, the AATS medium was compatible with 3D microscaffold (MS) culture, which may facilitate large-scale bioproduction of ECs. HPSC-derived ECs and SMCs in the AATS medium exhibited strong revascularization potential in treating murine ischemic models. Our study provided a cost-effective and efficient medium system to manufacture GMP compatible, off-the-shelf ECs, and SMCs to model human diseases and vascular repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2021.120713 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!