During infections, fast identification of the microorganisms is critical to improve patient treatment and to better manage antibiotics use. Electrochemistry exhibits several advantages for rapid diagnostic: it enables easy, cheap and in situ analysis of redox molecules in most liquids. In this work, several culture supernatants of different Pseudomonas aeruginosa strains (including PAO1 and its isogenic mutants PAO1ΔpqsA, PA14, PAK and CHA) were analyzed by square wave voltammetry on glassy carbon electrode during the bacterial growth. The obtained voltamograms shown complex traces exhibiting numerous redox peaks with potential repartitions and current amplitudes depending on the studied bacterium and/or growth time. Among them, some peaks were clearly associated to the well-known redox toxin Pyocyanin (PYO) and the autoinducer Pseudomonas Quinolone Signal (PQS). Other peaks were observed that are not yet attributed to known secreted species. Each complex electrochemical response (number of peaks, peak potential and amplitude) can be interpreted as a fingerprint or "ID-card" of the studied strain that may be implemented for fast bacteria strain identification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2021.107747DOI Listing

Publication Analysis

Top Keywords

redox molecules
8
pseudomonas aeruginosa
8
electrochemical detection
4
redox
4
detection redox
4
molecules secreted
4
secreted pseudomonas
4
aeruginosa electrochemical
4
electrochemical signatures
4
signatures strains
4

Similar Publications

Xanthium strumarium/gelatin methacryloyl based hydrogels with anti-inflammatory and antioxidant properties for diabetic wound healing via akt/mtor pathway.

Int J Biol Macromol

January 2025

Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, Guangdong, China; Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China. Electronic address:

Chronic wound healing is often hindered by long-term inflammation and redox imbalance. Herbal medicine, with its rich medicinal components such as polysaccharides, flavonoids, phenolic acids, and small-molecule nutrients, has gained attention for its anti-inflammatory and antioxidant properties. Xanthium strumarium (XS) is a potent anti-inflammatory herb that has shown promise in treating conditions like rhinitis and may have specific benefits for chronic skin wounds.

View Article and Find Full Text PDF

Mitochondria are major sites of reactive oxygen species (ROS) production within cells. ROS are important signalling molecules, but excessive production can cause cellular damage and dysfunction. It is therefore crucial to accurately determine when, how and where ROS are produced within mitochondria.

View Article and Find Full Text PDF

Electronic coupling between individual redox units in a molecular assembly dictates their charge transfer efficacy. Being a well-defined crystalline structure, the metal-organic framework (MOF) ensures proper positioning of redox-active moieties and provides a unique platform to unveil their charge transfer dynamics and quantification with structural relationships. Here, we demonstrate a novel redox-active MOF with near-infrared through-space intervalence charge transfer by introducing a mixed valence state inside redox-active thiazolothiazole-based ligands (DPTTZ) upon photo- or electrochemical reduction.

View Article and Find Full Text PDF

Catalytically active nanomaterials, or nanozymes, have gained significant attention as alternatives to natural enzymes due to their low cost, ease of preparation, and enhanced stability. Because of easy preparation, excellent biocompatibility, and unique optoelectronic properties, gold nanoparticles (AuNPs) have attracted increasing attention in many fields, including nanozymes. In this work, we demonstrated the applicability of beta-cyclodextrin functionalized gold nanoparticles (β-CD-AuNPs) as enzyme mimics for different substances, including TMB and DA.

View Article and Find Full Text PDF

Elevated dopamine (DA) levels in urine denote neuroblastoma, a pediatric cancer. Saccharide-derived carbon dots (CDs) were applied to assay DA detection in simulated urine (SU) while delineating the effects of graphene defect density on electrocatalytic activity. CDs were hydrothermally synthesized to vary graphene defect densities using sucrose, raffinose, and palatinose, depositing them onto glassy carbon electrodes (GCEs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!