Cadmium disrupts mitochondrial distribution and activates excessive mitochondrial fission by elevating cytosolic calcium independent of MCU-mediated mitochondrial calcium uptake in its neurotoxicity.

Toxicology

Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, People's Republic of China; Department of Occupational Health, Third Military Medical University, Chongqing 400038, People's Republic of China; Institute of Occupational Diseases and Poisoning, School of Public Health, Nanjing Medical University, Chongqing 400060, People's Republic of China. Electronic address:

Published: April 2021

Cadmium (Cd) is a ubiquitous environmental and occupational pollutant that is considered as a high-risk factor for neurodegenerative diseases. However, the mechanism underlying Cd-induced neurotoxicity has not been fully elucidated. Abnormal mitochondrial distribution and excessive mitochondrial fission are increasingly implicated in various neurological pathologies. Herein, by exposing primary cortical neurons to Cd (10 and 100 μM) for various times (0, 6, 12, and 24 h), we observed that the rapid motility of the mitochondria in neurons progressively slowed. Many more mitochondria were transported and distributed to the somas of Cd-treated neurons. Coupled with abnormal mitochondrial distribution, Cd exposure triggered excessive mitochondrial fragmentation, followed by mitochondrial membrane potential loss and neuronal damage. However, BAPTA-AM, a chelator of cytosolic calcium ([Ca]), significantly attenuated Cd-induced abnormal mitochondrial distribution and excessive mitochondrial fission, which protected against Cd-induced mitochondrial damage and neuronal toxicity. In contrast to the increase in [Ca], Cd exposure had no effect on the level of mitochondrial calcium ([Ca]). Inhibiting [Ca] uptake, either by ruthenium 360 (Ru360) or by knock-out of mitochondrial calcium uniporter (MCU), failed to alleviate Cd-induced mitochondrial damage and neuronal toxicity. Additionally, in MCU knock-out neurons, BAPTA-AM effectively prevented Cd-induced abnormal mitochondrial distribution and excessive mitochondrial fission. Taken together, Cd exposure disrupts mitochondrial distribution and activates excessive mitochondrial fission by elevating [Ca] independent of MCU-mediated mitochondrial calcium uptake, thereby leading to neurotoxicity. Chelating overloaded [Ca] is a promising strategy to prevent the neurotoxicity of Cd.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2021.152726DOI Listing

Publication Analysis

Top Keywords

mitochondrial distribution
24
excessive mitochondrial
24
mitochondrial fission
20
mitochondrial
19
mitochondrial calcium
16
abnormal mitochondrial
16
distribution excessive
12
disrupts mitochondrial
8
distribution activates
8
activates excessive
8

Similar Publications

Comprehensive analysis of the multi-rings mitochondrial genome of Populus tomentosa.

BMC Genomics

January 2025

State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.

Background: Populus tomentosa, known as Chinese white poplar, is indigenous and distributed across large areas of China, where it plays multiple important roles in forestry, agriculture, conservation, and urban horticulture. However, limited accessibility to the mitochondrial (mt) genome of P. tomentosa impedes phylogenetic and population genetic analyses and restricts functional gene research in Salicaceae family.

View Article and Find Full Text PDF

The frequency of mitochondrial DNA haplogroups (mtDNA-HG) in humans is known to be shaped by migration and repopulation. Mounting evidence indicates that mtDNA-HG are not phenotypically neutral, and selection may contribute to its distribution. Haplogroup H, the most abundant in Europe, improved survival in sepsis.

View Article and Find Full Text PDF

Mapping mitochondrial morphology and function: COX-SBFSEM reveals patterns in mitochondrial disease.

Commun Biol

January 2025

Wellcome Centre for Mitochondrial Research, Translational and Clinical Research, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.

Mitochondria play a crucial role in maintaining cellular health. It is interesting that the shape of mitochondria can vary depending on the type of cell, mitochondrial function, and other cellular conditions. However, there are limited studies that link functional assessment with mitochondrial morphology evaluation at high magnification, even fewer that do so in situ and none in human muscle biopsies.

View Article and Find Full Text PDF

Genetic identification of zoonotic parasite Anisakis pegreffii (Nematoda: Anisakidae) parasitizing the shortfin squid Illex argentinus under commercial exploitation in the Southwestern Atlantic Ocean.

Int J Food Microbiol

January 2025

Laboratorio de Ictioparasitología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.

Despite the shortfin squid, Illex argentinus, is one of the most important commercial species for the Argentine fisheries, being the third frozen product exported to Europe, the occurrence and distribution of zoonotic anisakid nematodes is scarcely reported. A total of 712 I. argentinus distributed in 17 samples, corresponding to its three main commercial stocks, caught along its distribution range in Argentine waters were examined for anisakid parasites.

View Article and Find Full Text PDF

Yeast Dnm1 causes altered organelle dynamics and sheds light on the human DRP1 disease mechanism.

Mitochondrion

January 2025

Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India. Electronic address:

Mitochondrial morphology is a result of regulated opposite events called fission and fusion and requires the GTPase, dynamin-related protein 1 (DRP1/Dnm1), or its homologs. A recent clinical report identified a heterozygous missense mutation in the human DRP1 that replaces Glycine (G) 149 with Arginine (R) and results in debilitating conditions in the patient. In this study, we mimicked this mutation in yeast Dnm1 (G178R) and investigated the impact of the pathogenic mutation on the protein's function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!