Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Proteasome-mediated substrate degradation is an essential process that relies on the coordinated actions of ubiquitin (Ub), shuttle proteins containing Ub-like (UBL) domains, and the proteasome. Proteinaceous substrates are tagged with polyUb and shuttle proteins, and these signals are then recognized by the proteasome, which subsequently degrades the substrate. To date, three proteasomal receptors have been identified, as well as multiple shuttle proteins and numerous types of polyUb chains that signal for degradation. While the components of this pathway are well-known, our understanding of their interplay is unclear-especially in the context of Rpn1, the largest proteasomal subunit. Here, using nuclear magnetic resonance (NMR) spectroscopy in combination with competition assays, we show that Rpn1 associates with UBL-containing proteins and polyUb chains, while exhibiting a preference for shuttle protein Rad23. Rpn1 appears to contain multiple Ub/UBL-binding sites, theoretically as many as one for each of its hallmark proteasome/cyclosome repeats. Remarkably, we also find that binding sites on Rpn1 can be shared among Ub and UBL species, while proteasomal receptors Rpn1 and Rpn10 can compete with each other for binding of shuttle protein Dsk2. Taken together, our results rule out the possibility of exclusive recognition sites on Rpn1 for individual Ub/UBL signals and further emphasize the complexity of the redundancy-laden proteasomal degradation pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8008175 | PMC |
http://dx.doi.org/10.1016/j.jbc.2021.100450 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!