Most cells possess the capacity to locomote. Alone or collectively, this allows them to adapt, to rearrange, and to explore their surroundings. The biophysical characterization of such motile processes, in health and in disease, has so far focused mostly on two limiting cases: single-cell motility on the one hand and the dynamics of confluent tissues such as the epithelium on the other. The in-between regime of clusters, composed of relatively few cells moving as a coherent unit, has received less attention. Such small clusters are, however, deeply relevant in development but also in cancer metastasis. In this work, we use cellular Potts models and analytical active matter theory to understand how the motility of small cell clusters changes with N, the number of cells in the cluster. Modeling and theory reveal our two main findings: cluster persistence time increases with N, whereas the intrinsic diffusivity decreases with N. We discuss a number of settings in which the motile properties of more complex clusters can be analytically understood, revealing that the focusing effects of small-scale cooperation and cell-cell alignment can overcome the increased bulkiness and internal disorder of multicellular clusters to enhance overall migrational efficacy. We demonstrate this enhancement for small-cluster collective durotaxis, which is shown to proceed more effectively than for single cells. Our results may provide some novel, to our knowledge, insights into the connection between single-cell and large-scale collective motion and may point the way to the biophysical origins of the enhanced metastatic potential of small tumor cell clusters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8105737 | PMC |
http://dx.doi.org/10.1016/j.bpj.2021.02.014 | DOI Listing |
Macromol Biosci
January 2025
Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia.
Invasive fungal infections cause over 3.7 million deaths worldwide annually, underscoring the critical need for new antifungal agents. Developing selective antifungal agents is challenging due to the shared eukaryotic nature of both fungal and mammalian cells.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.
Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.
View Article and Find Full Text PDFAnal Cell Pathol (Amst)
January 2025
Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China.
Trauma and burns are leading causes of death and significant global health concerns. RNA-binding proteins (RBPs) play a crucial role in post-transcriptional gene regulation, influencing various biological processes of cellular RNAs. This study aims to review the emerging trends and key areas of research on RBPs in the context of trauma and burns.
View Article and Find Full Text PDFFront Neurosci
December 2024
Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.
Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.
View Article and Find Full Text PDFFront Neural Circuits
January 2025
Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan.
Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social interaction and communication, along with restricted and repetitive behaviors. Both genetic and environmental factors contribute to ASD, with prenatal exposure to valproic acid (VPA) and nicotine being linked to increased risk. Impaired adult hippocampal neurogenesis, particularly in the ventral region, is thought to play a role in the social deficits observed in ASD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!