Transmission is the fundamental process whereby pathogens infect their hosts and spread through populations, and can be characterized using mathematical functions. The functional form of transmission for emerging pathogens can determine pathogen impacts on host populations and can inform the efficacy of disease management strategies. By directly measuring transmission between infected and susceptible adult eastern newts (Notophthalmus viridescens) in aquatic mesocosms, we identified the most plausible transmission function for the emerging amphibian fungal pathogen Batrachochytrium salamandrivorans (Bsal). Although we considered a range of possible transmission functions, we found that Bsal transmission was best explained by pure frequency dependence. We observed that >90% of susceptible newts became infected within 17 days post-exposure to an infected newt across a range of host densities and initial infection prevalence treatments. Under these conditions, we estimated R = 4.9 for Bsal in an eastern newt population. Our results suggest that Bsal has the capability of driving eastern newt populations to extinction and that managing host density may not be an effective management strategy. Intervention strategies that prevent Bsal introduction or increase host resistance or tolerance to infection may be more effective. Our results add to the growing empirical evidence that transmission of wildlife pathogens can saturate and be functionally frequency-dependent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9290712 | PMC |
http://dx.doi.org/10.1111/tbed.14043 | DOI Listing |
PLoS One
December 2024
Warnell School of Forestry, University of Georgia Athens, Athens, Georgia, United States of America.
Remotely-sensed risk assessments of emerging, invasive pathogens are key to targeted surveillance and outbreak responses. The recent emergence and spread of the fungal pathogen, Batrachochytrium salamandrivorans (Bsal), in Europe has negatively impacted multiple salamander species. Scholars and practitioners are increasingly concerned about the potential consequences of this lethal pathogen in the Americas, where salamander biodiversity is higher than anywhere else in the world.
View Article and Find Full Text PDFEcohealth
November 2024
Department of Biological Sciences, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA.
The fungal pathogen Batrachochytrium salamandrivorans (Bsal) is one of two species (the other, B. dendrobatidis/Bd) that cause amphibian chytridiomycosis, an emerging infectious disease that has been indicated in the declines of hundreds of amphibian species worldwide. While Bd has been near globally distributed for decades, Bsal is a more recently emerged pathogen, having been identified just over a decade ago with current impacts localized to salamandrids in parts of Europe.
View Article and Find Full Text PDFPLoS Pathog
October 2024
Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, Belgium.
Conserv Biol
August 2024
U.S. Geological Survey, Massachusetts Cooperative Fish and Wildlife Research Unit, University of Massachusetts Amherst, Amherst, Massachusetts, USA.
Finding effective pathogen mitigation strategies is one of the biggest challenges humans face today. In the context of wildlife, emerging infectious diseases have repeatedly caused widespread host morbidity and population declines of numerous taxa. In areas yet unaffected by a pathogen, a proactive management approach has the potential to minimize or prevent host mortality.
View Article and Find Full Text PDFIntegr Zool
June 2024
School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
Chytridiomycosis, an infectious skin disease caused by the chytrid fungi, Batrachochytrium dendrobatidis and B. salamandrivorans, poses a significant threat to amphibian biodiversity worldwide. Antifungal bacteria found on the skin of chytrid-resistant amphibians could potentially provide defense against chytridiomycosis and lower mortality rates among resistant individuals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!