Proteases are an important class of enzymes, whose activity is central to many physiologic and pathologic processes. Detailed knowledge of protease specificity is key to understanding their function. Although many methods have been developed to profile specificities of proteases, few have the diversity and quantitative grasp necessary to fully define specificity of a protease, both in terms of substrate numbers and their catalytic efficiencies. We have developed a concept of "selectome"; the set of substrate amino acid sequences that uniquely represent the specificity of a protease. We applied it to two closely related members of the Matrixin family-MMP-2 and MMP-9 by using substrate phage display coupled with Next Generation Sequencing and information theory-based data analysis. We have also derived a quantitative measure of substrate specificity, which accounts for both the number of substrates and their relative catalytic efficiencies. Using these advances greatly facilitates elucidation of substrate selectivity between closely related members of a protease family. The study also provides insight into the degree to which the catalytic cleft defines substrate recognition, thus providing basis for overcoming two of the major challenges in the field of proteolysis: 1) development of highly selective activity probes for studying proteases with overlapping specificities, and 2) distinguishing targeted proteolysis from bystander proteolytic events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7932537 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1008101 | DOI Listing |
Arch Dermatol Res
January 2025
Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.
Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.
View Article and Find Full Text PDFAdv Biol (Weinh)
January 2025
Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.
View Article and Find Full Text PDFCancer Med
January 2025
Department of Urology, Queen Elizabeth University Hospital, Glasgow, UK.
Background: To assess how centralisation of cancer services via robotic surgery influenced positive surgical margin (PSM) occurrence and its associated risk of biochemical recurrence (BCR) in cases of pT2 prostate cancer (PC).
Methods: Retrospective analysis of all radical prostatectomy (RP) cases performed in the West of Scotland during the period from January 2013 to June 2022. Primary outcomes were PSM and BCR.
Fish Physiol Biochem
January 2025
Institute of Agrifood Research and Technology (IRTA), Centre de La Ràpita, Crta. Poble Nou del Delta Km 5.5, 43540, la Ràpita, Spain.
The effect of different feeding habits on gut morphology and digestive function has been intensively studied during the last decades but sympatric closely related fishes are relatively rare objects of such studies. In the present study, we have identified both morphological and physiological changes in the digestive system of a sympatric pair of whitefish represented by "normal" Coregonus lavaretus pidschian (benthivorous) and "dwarf" C. l.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Nuclear Medicine, TUM University Hospital rechts der Isar, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany.
Prostate-specific membrane antigen (PSMA)-targeted positron emission tomography (PET) has improved localization of prostate cancer (PC) lesions in biochemical recurrence (BCR) for salvage radiotherapy (SRT). We conducted a retrospective review of patients undergoing F-rhPSMA-7 or F-flotufolastat (F-rhPSMA-7.3)-PET-guided SRT compared with conventional-SRT (C-SRT) without PET.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!