The cell line RTgill-W1 was evaluated as an in vitro alternative model for acute fish whole-effluent toxicity (WET) testing. We determined the 50% effective concentration (EC50) that reduces the viability of RTgill-W1 cells for selected toxicants commonly found in effluent samples and correlated those values with the respective 50% lethal concentration (LC50) of freshwater (fathead minnow, Pimephales promelas) and marine (sheepshead minnow, Cyprinodon variegatus) fish species obtained from the literature. Excluding low water-soluble organics and the volatile sodium hypochlorite, significant correlations were measured for metal, metalloids, ammonia, and higher water-soluble organics between in vitro EC50 values and in vivo LC50 values for both species. Typically, toxicity studies with RTgill-W1 cells are conducted by adding salts to the exposure medium, which may affect the bioavailability of toxicants. Osmotic tolerance of RTgill-W1 cells was found between 150 and 450 mOsm/kg, which were set as the hypoosmotic and hyperosmotic limits. A subset of the toxicants were then reexamined in hypoosmotic and hyperosmotic media. Copper toxicity decreased in hyperosmotic medium, and nickel toxicity increased in hypoosmotic and hyperosmotic media. Linear alkylbenzene sulfonate toxicity was not affected by the medium osmolality. Overall, RTgill-W1 cells have shown potential for applications in measuring metal, metalloids, ammonia, and water-soluble organic chemicals in acute WET tests, as well as complementing current toxicity identification and reduction evaluation strategies. In the present study, RTgill-W1 cells have been established as a valid animal alternative for WET testing, and we show that through manipulation of medium osmotic ranges, sensitivity to nickel was enhanced. Environ Toxicol Chem 2021;40:1050-1061. © 2020 SETAC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.4947DOI Listing

Publication Analysis

Top Keywords

rtgill-w1 cells
20
hypoosmotic hyperosmotic
12
whole-effluent toxicity
8
wet testing
8
water-soluble organics
8
metal metalloids
8
metalloids ammonia
8
hyperosmotic media
8
toxicity
7
rtgill-w1
6

Similar Publications

Long dsRNA induces the expression of type I interferons (IFNs) and IFN-stimulated genes (ISGs) to establish an antiviral state. When induced prophylactically, this antiviral state can reduce the severity and mortality of viral infections. One of the limiting factors in delivering dsRNA in animal models is the lack of an effective carrier that protects the dsRNA from degradation in the extracellular space.

View Article and Find Full Text PDF

TPD-seq: A high throughput RNA-seq method to derive transcriptomic points of departure from cell lines.

Toxicol In Vitro

December 2024

Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada. Electronic address:

There is growing scientific and regulatory interest in transcriptomic points of departure (tPOD) values from high-throughput in vitro experiments. To further help democratize tPOD research, here we outline 'TPD-seq' which links microplate-based exposure methods involving cell lines for human (Caco-2, Hep G2) and environmental (rainbow trout RTgill-W1) health, with a commercially available RNA-seq kit, with a cloud-based bioinformatics tool (ExpressAnalyst.ca).

View Article and Find Full Text PDF

MAPK pathways regulated apoptosis and pyroptosis in respiratory epithelial cells of a primitive vertebrate model during bacterial infection.

Int J Biol Macromol

December 2024

Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, 430070 Wuhan, China. Electronic address:

Respiratory diseases caused by bacterial and viral infection have seriously affected human health. The invaginated lung structure in mammals caused difficulties in relevant research, here we evaluated the regulatory roles of MAPK pathways in apoptosis and pyroptosis during bacterial infection in an evaginated respiratory organ model for the first time. F.

View Article and Find Full Text PDF

The internal timekeeping system regulates the daily cycle of physiological and behavioural changes in living organisms. This rhythmic phenomenon also influences cellular responses to reactive oxygen species, such as hydrogen peroxide (HO). However, the temporal interaction between HO and fish mucosal cells is not well understood.

View Article and Find Full Text PDF

How relevant are sterols in the mode of action of prymnesins?

Aquat Toxicol

November 2024

Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; Unit Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria. Electronic address:

Prymnesins, produced by the haptophyte Prymnesium parvum, are considered responsible for fish kills when this species blooms. Although their toxic mechanism is not fully understood, membrane disruptive properties have been ascribed to A-type prymnesins. Currently it is suggested that pore-formation is the underlying cause of cell disruption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!