Background Information: Leukocytes migrate in an amoeboid fashion while patrolling our organism in the search for infection or tissue damage. Their capacity to migrate has been proven integrin independent, however, non-specific adhesion or confinement remain a requisite in current models of cell migration. This idea has been challenged twice within the last decade with human neutrophils and effector T lymphocytes, which were shown to migrate in free suspension, a phenomenon termed swimming. While the relevance of leukocyte swimming in vivo remains under judgment, a growing amount of clinical evidence demonstrates that leukocytes are indeed found in liquid-filled body cavities, occasionally with phagocyted pathogens, such as in the amniotic fluid, the cerebrospinal fluid (CSF), or the eye vitreous and aqueous humor.

Results: We studied in vitro swimming of primary human neutrophils in the presence of live bacteria, in 2 and 3 dimensions. We show that swimming neutrophils perform phagocytosis of bacteria in suspension. By micropatterning live bacteria on a substrate with an optical technique, we further prove that they use chemotaxis to swim towards their targets. Moreover, we provide evidence that neutrophil navigation can alternate between adherent and non-adherent modes.

Conclusions: Our results suggest that human neutrophils do not rely on adhesion to carry out their functions, supporting a versatile phagocytic function adaptable to the various environmental conditions encountered in vivo, as already suggested by clinical data.

Significance: We verified a claim stated 10 years ago and never reproduced, on the capacity of human neutrophils to swim and perform swimming chemotaxis. We further extended those results to prove that swimming neutrophils can phagocytise bacteria, disregarding adhesion nor confinement as a requisite for accomplishing their function, which differs with current paradigms of leukocyte migration.

Download full-text PDF

Source
http://dx.doi.org/10.1111/boc.202000084DOI Listing

Publication Analysis

Top Keywords

human neutrophils
20
neutrophils swim
8
phagocytise bacteria
8
adhesion confinement
8
live bacteria
8
swimming neutrophils
8
neutrophils
6
swimming
6
human
5
bacteria
5

Similar Publications

The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges.

View Article and Find Full Text PDF

Background: The aim of this study was to investigate the clinical characteristics of severe pneumonia caused by human bocavirus (HBoV) infection to explore the associated risk factors.

Methods: We conducted a retrospective review of data from children hospitalized with HBoV pneumonia. Based on the severity of pneumonia, patients were categorized into severe pneumonia and non-severe pneumonia groups.

View Article and Find Full Text PDF

Background: Mitochondria generate the adenosine triphosphate (ATP) necessary for eukaryotic cells, serving as their primary energy suppliers, and contribute to host defense by producing reactive oxygen species. In many critical illnesses, including sepsis, major trauma, and heatstroke, the vicious cycle between activated coagulation and inflammation results in tissue hypoxia-induced mitochondrial dysfunction, and impaired mitochondrial function contributes to thromboinflammation and cell death.

Methods: A computer-based online search was performed using the PubMed and Web of Science databases for published articles concerning sepsis, trauma, critical illnesses, cell death, mitochondria, inflammation, coagulopathy, and organ dysfunction.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by intestinal inflammation and autoimmune responses. This study aimed to identify diagnostic biomarkers for UC through bioinformatics analysis and machine learning, and to validate these findings through immunofluorescence staining of clinical samples. Differential expression analysis was conducted on expression profile datasets from 4 UC samples.

View Article and Find Full Text PDF

Microthrombus formation is associated with COVID-19 severity; however, the detailed mechanism remains unclear. In this study, we investigated mouse models with severe pneumonia caused by SARS-CoV-2 infection by using our in vivo two-photon imaging system. In the lungs of SARS-CoV-2-infected mice, increased expression of adhesion molecules in intravascular neutrophils prolonged adhesion time to the vessel wall, resulting in platelet aggregation and impaired lung perfusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!