Climate change, malnutrition, and food insecurity are the inevitable challenges being faced by the agriculture sector today. Plants are susceptible to extreme temperatures during the crucial phases of flowering and seed development, and elevated carbon levels also lead to yield losses. Productivity is also affected by floods and droughts. Therefore, increasing plant yield and stress tolerance are the priorities to be met through novel biotechnological interventions. The contributions of NAC genes towards enhancing plant survivability under stress is well known. Here we focus on the potential of NAC genes in the regulation of abiotic stress tolerance, secondary cell wall synthesis, lateral root development, yield potential, seed size and biomass, ROS signaling, leaf senescence, and programmed cell death. Once naturally tolerant candidate NAC genes have been identified, and the nature of their association with growth and fitness against multi-environmental stresses has been determined, they can be exploited for building inherent tolerance in future crops via transgenic technologies. An update on the latest developments is provided in this review, which summarizes the current understanding of the roles of NAC in the establishment of various stress-adaptive mechanisms in model and food crop plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8106581 | PMC |
http://dx.doi.org/10.1007/s10265-021-01270-y | DOI Listing |
Plants (Basel)
December 2024
Facultad de Ciencias Agronómicas, Departamento de Sanidad Vegetal, Universidad de Chile, La Pintana 8820808, Chile.
pv. is the main causal agent of bacterial canker in sweet cherry in Chile, causing significant economic losses. Cultivars exhibit diverse susceptibility in the field and the molecular mechanisms underlying the differential responses remain unclear.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China.
Light is a vital environmental cue that profoundly influences the development of plants. LED lighting offers significant advantages in controlled growth environments over fluorescent lighting. Under monochromatic blue LED light, wheat plants exhibited reduced stature, accelerated spike development, and a shortened flowering period with increased blue light intensity promoting an earlier heading date.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
Sci Rep
January 2025
Guangxi TCM Resources General Survey and Data Collection Key Laboratory/ the Center for Phylogeny and Evolution of Medicinal Plants, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
The tubers of Curcuma kwangsiensis are regarded as an important medicinal material in China. In C. kwangsiensis cultivation, tuber expansion is key to yield and quality, but the regulatory mechanisms are not well understood.
View Article and Find Full Text PDFGenome Biol
January 2025
College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
Background: Fruit acidity and color are important quality attributes in peaches. Although there are some exceptions, blood-fleshed peaches typically have a sour taste. However, little is known about the genetic variations linking organic acid and color regulation in peaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!