Objective: Staphylococcal nuclease domain-containing 1 (SND1) that functioned as an oncogene in a variety of tumors was upregulated in burn-injured skin tissues, and this study aims to investigate the effect of SND1 on keloid and elucidate the underlying mechanism.
Methods: Keloid fibroblasts (KFs) and normal skin fibroblasts (NFs) were isolated from the keloid tissues and adjacent normal skin tissues of keloid patients. The SND1 expression was assessed in keloid tissues and KFs with Western blot assay. Gain- and loss-of-function experiments were performed to investigate the role of SND1 in proliferation, colony formation, telomerase activity, expression of fibrogenic genes and production of pro-inflammatory factors in KFs. Chromatin immunoprecipitation (CHIP) and Dual-luciferase reporter gene assays were used to verify the interaction of Paired-box gene 5 (PAX5) on SND1 promoter. Then, a series of rescue experiments were performed to verify the effects of SND1 overexpression on PAX5 knockdown-mediated KF functions. Finally, the role of SND1 in keloid formation in vivo was validated in mice with keloid implantation.
Results: SND1 was upregulated in keloid tissues and KFs. SND1 positively regulated proliferation, colony formation, telomerase activity, production of pro-inflammatory factors and expression of fibrogenic genes. PAX5 directly bound to the SND1 promoter to transcriptionally regulate SND1 expression and positively regulated SND1-mediated KF functions via the ERK/JNK pathway. In vivo assay further demonstrated that SND1 displayed a positive effect on keloid formation.
Conclusion: SND1 transcriptionally regulated by PAX5 promotes keloid formation through activating telomerase activity via the ERK/JNK signaling pathways, which provides a promising therapeutic target for clinical treatment of burned skin keloid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00011-021-01444-3 | DOI Listing |
Ther Adv Rare Dis
January 2025
Department of Pediatrics, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru.
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening systemic hyperinflammatory syndrome, rarely associated with bone marrow failure (BMF). Telomere biology disorders (TBD) are caused by inherited defects in telomerase processes and can have heterogeneous presentations including idiopathic pulmonary fibrosis, cirrhosis, and BMF. We report a case of a 10-year-old male from Lima, Peru, who presented with HLH as the initial manifestation of a TBD.
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP) - Botucatu-SP, Brazil. Electronic address:
Leishmaniasis is a neglected tropical disease caused by protozoans of the Leishmania genus, against which no effective treatment or control is available. Like other eukaryotes, parasite telomeres are maintained by telomerase, a ribonucleoprotein complex vital for genome stability. Its protein component, TERT (telomerase reverse transcriptase), presents four structural and functional domains, with the TEN (Telomerase N-terminal) and TRBD (Telomerase RNA-binding) located at its N-terminal.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of Medical and Surgical Sciences, Medical Oncology , Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy.
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and deadly type of cancer, with an extremely low five-year overall survival rate. To date, current treatment options primarily involve various chemotherapies, which often prove ineffective and are associated with substantial toxicity. Furthermore, immunotherapies utilizing checkpoint inhibitors have shown limited efficacy in this context, highlighting an urgent need for novel therapeutic strategies.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
To achieve replicative immortality, cancer cells must activate telomere maintenance mechanisms. In 10 to 15% of cancers, this is enabled by recombination-based alternative lengthening of telomeres pathways (ALT). ALT cells display several hallmarks including heterogeneous telomere length, extrachromosomal telomeric repeats, and ALT-associated PML bodies.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
Cancer is a leading cause of death, so continuous efforts into cancer therapy are imperative. In tumor cells, telomerase and oncogene activity are key points for uncontrolled cell growth. Targeting these processes with ligands that inhibit telomerase and/or reduce oncogene expression has been identified as a promising cancer therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!