Purpose: To determine and compare the mechanical properties of 3D-printed yttriastabilized zirconia to milled isostatic pressed yttria-stabilized zirconia, with the following hypotheses: (1) The flexural strength of 3D-printed yttria-stabilized zirconia is comparable to milled yttria-stabilized isostatic pressed zirconia; and (2) thermocycling and chewing simulation do not affect the flexural strength of 3D-printed yttria-stabilized zirconia.
Materials And Methods: A total of 30 bars of an experimental 3D-printed 3 mol% yttriastabilized zirconia (LithaCon 3Y 230, Lithoz) and 10 bars of milled isostatic pressed zirconia (Prettau Zirconia, Zirkonzahn) were utilized. The printed zirconia bars were divided into three groups (n = 10 bars per group): (1) untreated (control); (2) thermocycled; and (3) tested after chewing simulation. A flexural strength test was performed on all samples using a three-point bend test in an Instron Universal testing machine. One-way analysis of variance on ranks was used to compare milled to printed zirconia. The effects of thermocycling and load cycling on 3D-printed zirconia were also determined.
Results: The flexural strength values for milled and printed zirconia were 936.3 ± 255.0 MPa and 855.4 ± 112.6 MPa, respectively. There was no statistically significant difference in flexural strength between the milled and printed zirconia (P = .178). No statistically significant differences were observed between the control 3D-printed zirconia group and the thermocycled (888.4 ± 59.3 MPa) or load-cycled printed zirconia (789.6 ± 133.8 MPa; P = .119).
Conclusion: Printed 3 mol% yttria-stabilized zirconia has comparable flexural strength to milled yttria-stabilized isostatic pressed zirconia. The thermocycling and chewing simulation used in this study did not significantly alter the flexural strength of the printed 3 mol% yttria-stabilized zirconia. These results indicate a promising role for 3D printing in the fabrication of zirconia restorations. Additional studies are needed to explore the full potential of this technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.11607/ijp.6749 | DOI Listing |
Sci Rep
January 2025
Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.
Fiber-reinforced polymer composites are subjected to harsh environmental conditions over the course of their designed lifespan. Studying the aging process of fiber-reinforced polymer composites exposed to boiling water is critical for improving their durability. This study uses a hand lay-up technique to fabricate composites from glass fiber, bamboo fiber, nanoclay, and epoxy.
View Article and Find Full Text PDFSci Rep
January 2025
Department of General Dentistry, Medical University of Lodz, 251 Pomorska Str, Lodz, 92-213, Poland.
This study aimed at assessing the mechanical properties and degradation of commercial bioactive materials. The bioactive materials (Activa Bioactive Restorative, Beautifil Flow Plus F00, F03, Predicta Bulk Bioactive) and composite resin Filtek Supreme Flow were submitted to flexural and diametral tensile strength tests (FS, DTS), modulus of elasticity (ME) evaluation, and analysis of aging in 70% ethanol and saliva on their hardness and sorption. The results for DTS ranged from 33.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
Underwater superoleophobic and transparent (UST) films are promising in applications, such as advanced optical devices in marine environments. However, the mechanical robustness and durability in harsh environments of the existing UST films are still unsatisfactory. In this work, we present a free-standing nacre-inspired mineralized UST (NIM-UST) film with high aragonite content and excellent mechanical properties toward robust underwater superoleophobicity on two surfaces and transparency (94%) in harsh seawater environments.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
In the manufacturing of some sectors, such as marble and brick, certain byproducts, such as sludge, powder, and pieces containing valuable chemical compounds, emerge. Some concrete plants utilize these byproducts as mineralogical additives in Turkey. The objective of the experimental study is to ascertain whether the incorporation of waste from the marble and brick industries, in powder form, into cement manufacturing as a mineralogical additive or substitute is a viable option.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
January 2025
School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China. Electronic address:
Silicon nitride (Si₃N₄) ceramics exhibit excellent mechanical properties and biocompatibility, making them highly suitable for biomedical applications, particularly in implants. In this study, the mechanical properties and bioactivity of Si₃N₄ ceramics with varying amounts of Y₂O₃-Al₂O₃-SiO₂ sintering aids were investigated. Increasing the sintering additive content from 4 wt% to 8 wt% substantially improved the bulk density of the ceramics, leading to notable enhancements in mechanical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!