Electrode-electrolyte interfaces (EEIs) affect the rate capability, cycling stability, and thermal safety of lithium-ion batteries (LIBs). Designing stable EEIs with fast Li transport is crucial for developing advanced LIBs. Here, we study Li kinetics at EEIs tailored by three nanoscale polymer thin films via chemical vapor deposition (CVD) polymerization. Small binding energy with Li and the presence of sufficient binding sites for Li allow poly(3,4-ethylenedioxythiophene) (PEDOT) based artificial coatings to enable fast charging of LiCoO. Operando synchrotron X-ray diffraction experiments suggest that the superior Li transport property in PEDOT further improves current homogeneity in the LiCoO electrode during cycling. PEDOT also forms chemical bonds with LiCoO, which reduces Co dissolution and inhibits electrolyte decomposition. As a result, the LiCoO 4.5 V cycle life tested at C/2 increases over 1700% after PEDOT coating. In comparison, the other two polymer coatings show undesirable effects on LiCoO performance. These insights provide us with rules for selecting/designing polymers to engineer EEIs in advanced LIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c20978DOI Listing

Publication Analysis

Top Keywords

electrode-electrolyte interfaces
8
lithium-ion batteries
8
advanced libs
8
licoo
5
tailoring electrode-electrolyte
4
interfaces lithium-ion
4
batteries molecularly
4
molecularly engineered
4
engineered functional
4
functional polymers
4

Similar Publications

Rapid Na Transport Pathway and Stable Interface Design Enabling Ultralong Life Solid-State Sodium Metal Batteries.

Angew Chem Int Ed Engl

December 2024

School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Dalian University of Technology, Dalian, 116024, China.

Sodium-metal batteries (SMBs) using solid-state polymer electrolytes (SPEs) show impressive superiority in energy density and safety. As promising candidates for SPEs, solid-state plastic crystal electrolytes (SPCE) based on succinonitrile (SN) plastic crystal could achieve high ion conductivity and wide voltage window. Nonetheless, the notorious SN decomposition reaction on the electrode/electrolyte interface seriously challenges the stable operation of the battery.

View Article and Find Full Text PDF

Nickel-rich NCM cathode materials promise lithium-ion batteries with a high energy density. However, an increased Ni fraction in the cathode leads to complex phase transformations with electrode-electrolyte side reactions, which cause rapid capacity fading. Here, we show that an initial formation cycle at 0.

View Article and Find Full Text PDF

Enhancing Microdomain Consistency in Polymer Electrolytes towards Sustainable Lithium Batteries.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.

Polymer electrolytes incorporated with fillers possess immense potential for constructing the fast and selective Li conduction. However, the inhomogeneous distribution of the fillers usually deteriorates the microdomain consistency of the electrolytes, resulting in uneven Li flux, and unstable electrode-electrolyte interfaces. Herein, we formulate a solution-process chemistry to in situ construct gel polymer electrolytes (GPEs) with well-dispersed metal-organic frameworks (MOFs), leading to a uniform microdomain structure.

View Article and Find Full Text PDF

Long-standing challenges including notorious side reactions at the Zn anode, low Zn anode utilization, and rapid cathode degradation at low current densities hinder the advancement of aqueous zinc-ion batteries (AZIBs). Inspired by the critical role of capping agents in nanomaterials synthesis and bulk crystal growth, a series of capping agents are employed to demonstrate their applicability in AZIBs. Here, it is shown that the preferential adsorption of capping agents on different Zn crystal planes, coordination between capping agents and Zn ions, and interactions with metal oxide cathodes enable preferred Zn (002) deposition, water-deficient Zn ion solvation structure, and a dynamic cathode-electrolyte interface.

View Article and Find Full Text PDF

This study developed a novel PbS-rGO composite counter electrode to enhance the performance of quantum dot-sensitized solar cells (QDSSCs). The composite was synthesized a hydrothermal method by anchoring PbS nanocubes onto reduced graphene oxide (rGO) sheets. The effect of the mass ratio of rGO to PbS (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!