Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ultraviolet germicidal irradiation uses ultraviolet C (UV-C) energy to disinfect surfaces in clinical settings. Verifying that the doses of UV-C energy received by surfaces are adequate for proper disinfection levels can be difficult and expensive. Our study aimed to test commercially available colorimetric labels, sensitive to UV-C energy, and compare their precision with an accepted radiometric technique. The color-changing labels were found to predictably change color in a dose-dependent manner that would allow them to act as a qualitative alternative to radiometry when determining the minimum UV-C energy dosage received at surfaces. If deployed using careful protective techniques to avoid unintentional exposure to sunlight or other light sources, the use of colorimetric labels could provide inexpensive, easy, and accurate verification of effective UV-C dosing in clinical spaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/annweh/wxaa147 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!