A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigations on T cell transmigration in a human skin-on-chip (SoC) model. | LitMetric

Investigations on T cell transmigration in a human skin-on-chip (SoC) model.

Lab Chip

Department of Physics and Astronomy, University of Manitoba, 30A Sifton Rd, 301 Allen Bldg, Winnipeg, MB R3T 2N2, Canada. and Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada and Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA 95816, USA and Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.

Published: April 2021

AI Article Synopsis

  • A microfluidics-based skin-on-chip model is created to study T lymphocyte migration in skin inflammation and test new drugs.
  • Findings show that a modified CCL20 can inhibit T cell movement, indicating potential for psoriasis treatment.
  • The model also reveals that the S1P background reduces T cell egress and that inflammatory cytokines can stimulate T cell movement, allowing detailed, quantitative analysis of these processes.

Article Abstract

A microfluidics-based three-dimensional skin-on-chip (SoC) model is developed in this study to enable quantitative studies of transendothelial and transepithelial migration of human T lymphocytes in mimicked skin inflammatory microenvironments and to test new drug candidates. The keys results include 1) CCL20-dependent T cell transmigration is significantly inhibited by an engineered CCL20 locked dimer (CCL20LD), supporting the potential immunotherapeutic use of CCL20LD for treating skin diseases such as psoriasis; 2) transepithelial migration of T cells in response to a CXCL12 gradient mimicking T cell egress from the skin is significantly reduced by a sphingosine-1-phosphate (S1P) background, suggesting the role of S1P for T cell retention in inflamed skin tissues; and 3) T cell transmigration is induced by inflammatory cytokine stimulated epithelial cells in the SoC model. Collectively, the developed SoC model recreates a dynamic multi-cellular micro-environment that enables quantitative studies of T cell transmigration at a single cell level in response to physiological cutaneous inflammatory mediators and potential drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058301PMC
http://dx.doi.org/10.1039/d0lc01194kDOI Listing

Publication Analysis

Top Keywords

cell transmigration
16
soc model
16
skin-on-chip soc
8
quantitative studies
8
transepithelial migration
8
cell
6
investigations cell
4
transmigration
4
transmigration human
4
human skin-on-chip
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!