AI Article Synopsis

  • The activation of eukaryotic DNA replication begins when Mcm2-7 helicases at replication origins are licensed and then activated by the recruitment of Cdc45 and GINS, forming CMG complexes.
  • Using single-molecule assays, it was discovered that this recruitment occurs in two stages: first, Cdc45 and GINS bind to the unstructured tails of Mcm2-7 in a DDK-dependent manner, forming CtG intermediates.
  • DDK phosphorylation influences the number of CtGs formed, and higher CtG levels correlate with increased CMG formation, indicating a relationship between DDK levels and the efficiency of DNA replication origin activation.

Article Abstract

The committed step of eukaryotic DNA replication occurs when the pairs of Mcm2-7 replicative helicases that license each replication origin are activated. Helicase activation requires the recruitment of Cdc45 and GINS to Mcm2-7, forming Cdc45-Mcm2-7-GINS complexes (CMGs). Using single-molecule biochemical assays to monitor CMG formation, we found that Cdc45 and GINS are recruited to loaded Mcm2-7 in two stages. Initially, Cdc45, GINS, and likely additional proteins are recruited to unstructured Mcm2-7 N-terminal tails in a Dbf4-dependent kinase (DDK)-dependent manner, forming Cdc45-tail-GINS intermediates (CtGs). DDK phosphorylation of multiple phosphorylation sites on the Mcm2-7 tails modulates the number of CtGs formed per Mcm2-7. In a second, inefficient event, a subset of CtGs transfer their Cdc45 and GINS components to form CMGs. Importantly, higher CtG multiplicity increases the frequency of CMG formation. Our findings reveal the molecular mechanisms sensitizing helicase activation to DDK levels with implications for control of replication origin efficiency and timing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7954526PMC
http://dx.doi.org/10.7554/eLife.65471DOI Listing

Publication Analysis

Top Keywords

cdc45 gins
16
replication origin
8
helicase activation
8
cmg formation
8
mcm2-7
7
ddk regulates
4
replication
4
regulates replication
4
replication initiation
4
initiation controlling
4

Similar Publications

In spite of being dispensable for catalysis, Dpb2, the second largest subunit of leading strand DNA polymerase (Polymerase ε) is essential for cell survival in budding yeast. Dpb2 physically connects polymerase epsilon with the replicative helicase (CMG,Cdc45-Mcm-GINS) by interacting with its Psf1 subunit. Dpb2-Psf1 interaction has been shown to be critical for incorporating polymerase ε into the replisome.

View Article and Find Full Text PDF
Article Synopsis
  • The CMG helicase complex is essential for controlling gene expression during asymmetric cell divisions in C. elegans.
  • The specific component PSF-2 GINS2 is necessary for activating the pro-apoptotic gene egl-1, which is crucial for programmed cell death.
  • The study highlights CMG's role in influencing cell fates and suggests it affects gene expression beyond just egl-1 regulation.
View Article and Find Full Text PDF

Faithful genome duplication is essential for preserving the genetic stability of dividing cells. DNA replication is carried out during the S phase by a dynamic complex of proteins termed the replisome. At the heart of the replisome is the CDC45-MCM2-7-GINS (CMG) helicase, which separates the two strands of the DNA double helix such that DNA polymerases can copy each strand.

View Article and Find Full Text PDF

USP37 prevents unscheduled replisome unloading through MCM complex deubiquitination.

bioRxiv

September 2024

Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.

The CMG helicase (CDC45-MCM2-7-GINS) unwinds DNA as a component of eukaryotic replisomes. Replisome (dis)assembly is tightly coordinated with cell cycle progression to ensure genome stability. However, factors that prevent premature CMG unloading and replisome disassembly are poorly described.

View Article and Find Full Text PDF

The E3 ubiquitin ligase TRAIP associates with the replisome and helps this molecular machine deal with replication stress. Thus, TRAIP promotes DNA inter-strand crosslink repair by triggering the disassembly of CDC45-MCM2-7-GINS (CMG) helicases that have converged on these lesions. However, disassembly of single CMGs that have stalled temporarily would be deleterious, suggesting that TRAIP must be carefully regulated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!