Counter-diffusional biofilms are efficient in the removal of nitrogen from low strength wastewaters. Although counter-diffusion is usually established using expensive gas-permeable membranes, a polyurethane sheet is used to separate the aerobic and anoxic environments in the novel foam aerated biofilm reactor (FABR). Foam sheets with thicknesses of 10, 5 and 2 mm and synthetic wastewater with COD/N ratios of 5 and 2.5 were evaluated. The 2 mm thick foam reactor did not show good biomass adherence and, therefore, did not show N removal efficiency. The 5 and 10 mm reactors, in both COD/N ratios, showed similar total nitrogen and COD removal performance, up to 60% and 80%, respectively. The denitrification efficiency was close to 100% throughout the experimental period. Nitrification efficiency decreased with microbial growth, which was recovered after removal of excessive biomass. Lower values of polyurethane foam thickness and COD/N ratio did not provide a higher nitrification rate, as expected. The increase in resistance to mass transfer was associated with the growth of biomass attached to the foam rather than to its thickness and resulted in specialization of the microbial communities as revealed by 16S amplicon sequencing. FABR reveals as a promising alternative for simultaneous removal of nitrogen and COD from low COD/N ratio wastewaters.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2021.1893830DOI Listing

Publication Analysis

Top Keywords

foam aerated
8
aerated biofilm
8
biofilm reactor
8
low cod/n
8
removal nitrogen
8
cod/n ratios
8
nitrogen cod
8
foam thickness
8
cod/n ratio
8
foam
6

Similar Publications

Background: In biomanufacturing of surface-active agents, such as rhamnolipids, excessive foaming is a significant obstacle for the development of high-performing bioprocesses. The exploitation of the inherent tolerance of Pseudomonas putida KT2440, an obligate aerobic bacterium, to microaerobic conditions has received little attention so far. Here low-oxygen inducible promoters were characterized in biosensor strains and exploited for process control under reduction of foam formation by low aeration and stirring rates during biosynthesis of rhamnolipids.

View Article and Find Full Text PDF

Impact of cold plasma-assisted Non-thermal deamidation and glycosylation on the construction of sugar derivative-zein conjugates for enhancing pickering foam stability: Technical principles and molecular interactions.

Food Res Int

January 2025

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, No. 9, No. 13 Ave., TEDA, Tianjin 300457, China. Electronic address:

There is an urgent need for stable, plant-based Pickering foams to address the growing consumer demand for sustainable, low-calorie, aerated sweet foods. This study employed a cold plasma-assisted deamidation and glycosylation (CPDG) approach to promote hydrophilic reassembly of zein, resulting in the formation of sugar derivative-zein conjugates. This was accomplished by coupling deamidated zein with polyhydroxy sugars including sucralose (Suc), maltitol (Mal), mannitol (Man), and stevioside (Ste).

View Article and Find Full Text PDF

Whipping Creams: Advances in Molecular Composition and Nutritional Chemistry.

Molecules

December 2024

University of Artois, University of Lille, University of Littoral Côte d'Opale, University of Picardie Jules Verne, University of Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, 62300 Lens, France.

Whipping cream (WC) is an oil-in-water (O/W) emulsion used in food industry that can be transformed into aerated foam. The cream market has expanded significantly, driven by consumer demands for healthier and higher-quality products, leading to significant scientific research and innovation. This review focuses on formulation challenges related to ingredients such as fats, emulsifiers, and stabilizers, and how these components interact to form a stable emulsion and foam structure.

View Article and Find Full Text PDF

The pollution potential of a municipal wastewater treatment plant (WWTP) in Bursa, Türkiye, in terms of organochlorine pesticides (ΣOCPs), polychlorinated biphenyls (ΣPCBs), and polybrominated diphenyl ethers (ΣPBDEs), was investigated in air samples. Concentrations were determined using polyurethane foam disk samplers at key processes, such as the aeration tank (AT) and settling chamber (SC) of the WWTP and the background area (BA) at an urban site. Atmospheric concentration levels of PBDEs at the SC are 1.

View Article and Find Full Text PDF

Unveiling the role of aeration tanks in the emission and enrichment of airborne antibiotic resistance genes in a wastewater treatment plant.

Water Res

March 2025

Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan; Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan. Electronic address:

Article Synopsis
  • - The study investigates how aeration tanks in wastewater treatment plants (WWTPs) release airborne antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB), particularly noting the impact of bubble bursts at the air-liquid interface.
  • - Researchers found that the ARG levels in particulate matter (PM) were significantly higher than in wastewater, suggesting that ARGs can be transmitted through the air, with certain bacteria like Mycobacterium and Gordonia being key contributors to this phenomenon.
  • - The analysis indicates that these airborne ARGs are more resilient due to stress response genes, leading to heightened risks of exposure and potential health impacts from ARG-laden PM in the atmosphere.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!