Midpalatal corticotomy-assisted rapid maxillary expansion (MCRME) is a minimally invasive treatment of maxillary transverse deficiency (MTD) in young adults. However, the effect of MCRME on respiratory function still needs to be determined. In this study, we evaluated the changes in maxillary morphology and the upper airway following MCRME using computational fluid dynamics (CFD). Twenty patients with MTD (8 males, 12 females; mean age 20.55 years) had cone-beam computed tomography (CBCT) images taken before and after MCRME. The CBCT data were used to construct a three-dimensional (3D) upper airway model. The upper airway flow characteristics were simulated using CFD, and measurements were made based on the CBCT images and CFD. The results showed that the widths of the palatal bone and nasal cavity, and the intermolar width were increased significantly after MCRME. The volume of the nasal cavity and nasopharynx increased significantly, while there were no obvious changes in the volumes of the oropharynx and hypopharynx. CFD simulation of the upper airway showed that the pressure drop and maximum velocity of the upper airway decreased significantly after treatment. Our results suggest that in these young adults with MTD, increasing the maxillary width, upper airway volume, and quantity of airflow by MCRME substantially improved upper airway ventilation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897599 | PMC |
http://dx.doi.org/10.1631/jzus.B2000090 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!