Mannosylated Cationic Copolymers for Gene Delivery to Macrophages.

Macromol Biosci

Laboratory for Chemical Design of Bionanomaterials, Faculty of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 117234, Russia.

Published: April 2021

Macrophages are desirable targets for gene therapy of cancer and other diseases. Cationic diblock copolymers of polyethylene glycol (PEG) and poly-L-lysine (PLL) or poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (pAsp(DET)) are synthesized and used to form polyplexes with a plasmid DNA (pDNA) that are decorated with mannose moieties, serving as the targeting ligands for the C type lectin receptors displayed at the surface of macrophages. The PEG-b-PLL copolymers are known for its cytotoxicity, so PEG-b-PLL-based polyplexes are cross-linked using reducible reagent dithiobis(succinimidyl propionate) (DSP). The cross-linked polyplexes display low toxicity to both mouse embryonic fibroblasts NIH/3T3 cell line and mouse bone marrow-derived macrophages (BMMΦ). In macrophages mannose-decorated polyplexes demonstrate an ≈8 times higher transfection efficiency. The cross-linking of the polyplexes decrease the toxicity, but the transfection enhancement is moderate. The PEG-b-pAsp(DET) copolymers display low toxicity with respect to the IC-21 murine macrophage cell line and are used for the production of non-cross-linked pDNA-contained polyplexes. The obtained mannose modified polyplexes exhibit ca. 500-times greater transfection activity in IC-21 macrophages compared to the mannose-free polyplexes. This result greatly exceeds the targeting gene transfer effects previously described using mannose receptor targeted non-viral gene delivery systems. These results suggest that Man-PEG-b-pAsp(DET)/pDNA polyplex is a potential vector for immune cells-based gene therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8126558PMC
http://dx.doi.org/10.1002/mabi.202000371DOI Listing

Publication Analysis

Top Keywords

gene delivery
8
gene therapy
8
polyplexes
8
display low
8
low toxicity
8
macrophages
6
gene
5
mannosylated cationic
4
copolymers
4
cationic copolymers
4

Similar Publications

Lipid-encapsulated gold nanoparticles: an advanced strategy for attenuating the inflammatory response in SARS-CoV-2 infection.

J Nanobiotechnology

January 2025

Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Republic of Korea.

Background: Nanodrugs play a crucial role in biomedical applications by enhancing drug delivery. To address safety and toxicity concerns associated with nanoparticles, lipid-nanocarrier-based drug delivery systems have emerged as a promising approach for developing next-generation smart nanomedicines. Ginseng has traditionally been used for various therapeutic purposes, including antiviral activity.

View Article and Find Full Text PDF

Double-stranded RNA (dsRNA) mediated RNA interference (RNAi) is a tool in functional gene study and pest control. However, RNAi efficiency in Lepidoptera is low compared to the RNAi sensitive Coleoptera. Previous studies on RNAi in the silkworm Bombyx mori, the lepidopteran model insect, were performed by injection only.

View Article and Find Full Text PDF

Development of a StIW111C-based bioresponsive pore-forming conjugate for permeabilizing the endosomal membrane.

Int J Biol Macromol

January 2025

Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25(th) Street, corner to J Street. Square of Revolution, Havana 10400. Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, corner to 15 Street, Playa, Havana 11600, Cuba. Electronic address:

Gene expression manipulation is pivotal in therapeutic approaches for various diseases. Non-viral delivery systems present a safer alternative to viral vectors, with reduced immunogenicity and toxicity. However, their effectiveness in promoting endosomal escape, a crucial step in gene transfer, remains limited.

View Article and Find Full Text PDF

Recent advances in the synthesis and application of biomolecular condensates.

J Biol Chem

January 2025

CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. Electronic address:

Biomolecular condensates (BMCs) represent a group of organized and programmed systems that participate in gene transcription, chromosome organization, cell division, tumorigenesis, and aging. However, the understanding of BMCs in terms of internal organizations and external regulations remains at an early stage. Recently, novel approaches such as synthetic biology have been used for de novo synthesis of BMCs.

View Article and Find Full Text PDF

A self-gelling hemostatic powder boosting radiotherapy-elicited NK cell immunity to combat postoperative hepatocellular carcinoma relapse.

Biomaterials

December 2024

Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China. Electronic address:

Liver resection represents a main curative treatment for patients with early-stage hepatocellular carcinoma (HCC), but there is a rather high incidence of postoperative HCC relapse, which severely shortens long-term survival time. Currently, no standard adjuvant strategies are available for preventing HCC relapse in clinical practice. Impaired natural killer (NK) cell anti-tumor immunity has been disclosed as a crucial root of HCC relapse, indicating that reinstating NK cell anti-tumor immunity may show promise to curb HCC relapse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!