Cell-penetrating peptides (CPPs) can transport various cargoes through membranes of live cells. Since the first generations of CPPs suffered from insufficient cell and tissue selectivity, stability against proteases, and escape from endosomes, a new generation of peptides, with optimized properties, was developed. These are either derived from natural sources or created through the combination of multivalent structures. The second method allows achieving high internalization efficiency, high cell and tissue selectivity, and release from endosomes via hybrid structures, combining sequences for endosomal release, homing sequences, and sequences for activation at the target tissue and for local delivery of cargoes. CPPs with innate tumor selectivity include azurin, crotamine, maurocalcine, lycosin-I, buffalo cathelicidin, and peptide CB5005. Some of them can penetrate the membranes of live cells and influence intracellular signaling pathways, thereby exerting cytotoxic effects against tumor cells. To obtain multilayer penetration and stabilization against proteolytic degradation, as well as for better handling, CPPs are often conjugated to nanoparticles. A special problem for tumor treatment is the efficiency of drug transport through three-dimensional cell cultures. Therefore, the capability of CPPs to deliver the drug even to the innermost tissues is of crucial importance. Notably, the ability of certain CPPs to penetrate barriers such as skin, the blood-brain barrier (BBB), and cornea or conjunctiva of eyes enabled the replacement of dangerous and painful injections with soothing sprays, creams, and drops. However, it is difficult to rank the efficacy of CPPs because transport efficiency and tissue selectivity depend not only on the CPP itself but also on the target tissue or organ, as well as on the cargo and method of CPP-cargo coupling. Therefore, the present review describes some examples of new-generation CPPs and aims to provide advice on how to find or create the right CPP for a given task.

Download full-text PDF

Source
http://dx.doi.org/10.1002/psc.3300DOI Listing

Publication Analysis

Top Keywords

tissue selectivity
12
cell-penetrating peptides
8
cpps
8
cpps transport
8
membranes live
8
live cells
8
cell tissue
8
target tissue
8
tissue
5
generation cell-penetrating
4

Similar Publications

This study aimed to evaluate the effects of salt addition and different thermal-assisted pressure processing (TAPP) conditions (temperature and pressure levels) on technological, chromatic, and textural parameters and lipid oxidation of Superficial pectoralis beef muscle. A factorial design with three factors was applied: KCl/NaCl marination (marinated samples MS; non-marinated samples, NMS), temperature during high-pressure processing (50, 70°C), and pressure level (0.1, 200, and 300 MPa).

View Article and Find Full Text PDF

Gene Polymorphisms in Greek Primary Breast Cancer Patients.

Front Biosci (Schol Ed)

December 2024

Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia.

Background: Breast cancer is a heterogeneous disease with distinct clinical subtypes, categorized by hormone receptor status, which exhibits different prognoses and requires personalized treatment approaches. These subtypes included luminal A and luminal B, which have different prognoses. Breast cancer development and progression involve many factors, including interferon-gamma ().

View Article and Find Full Text PDF

Lighting Up and Identifying Metal-Binding Proteins in Cells.

JACS Au

December 2024

Department of Chemistry and HKU-CAS Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, P.R. China.

Metal ions, either essential or therapeutic, play critical roles in life processes or in the treatment of diseases. Proteins and enzymes are involved in metal homeostasis and the action of metallodrugs. Imaging and identifying these metal-binding proteins will facilitate the elucidation of metal-mediated life processes.

View Article and Find Full Text PDF

Prognostic and Predictive Biomarkers of Oligometastatic NSCLC: New Insights and Clinical Applications.

JTO Clin Res Rep

December 2024

Department of Pulmonary Diseases, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands.

This review discusses the current data on predictive and prognostic biomarkers in oligometastatic NSCLC and discusses whether biomarkers identified in other stages and widespread metastatic disease can be extrapolated to the oligometastatic disease (OMD) setting. Research is underway to explore the prognostic and predictive value of biological attributes of tumor tissue, circulating cells, the tumor microenvironment, and imaging findings as biomarkers of oligometastatic NSCLC. Biomarkers that help define true OMD and predict outcomes are needed for patient selection for oligometastatic treatment, and to avoid futile treatments in patients that will not benefit from locoregional treatment.

View Article and Find Full Text PDF

Vitiligo is a skin disease that affects all ethnicities and genders and is characterized by the loss of pigment essentially due to the selective loss of melanocytes. Although it is generally considered a systemic disease associated with polymorphisms in genes involved in the immune response, vitiligo is also considered an oxidative imbalance-associated disease. It represents a multifactorial pathology in which some genetic predisposition and epigenetic factors coupled with some critical biochemical and molecular pathways could play a pivotal role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!