A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cell-extracellular matrix interactions in the fluidic phase direct the topology and polarity of self-organized epithelial structures. | LitMetric

Introduction: In vivo, cells are surrounded by extracellular matrix (ECM). To build organs from single cells, it is generally believed that ECM serves as scaffolds to coordinate cell positioning and differentiation. Nevertheless, how cells utilize cell-ECM interactions for the spatiotemporal coordination to different ECM at the tissue scale is not fully understood.

Methods: Here, using in vitro assay with engineered MDCK cells expressing H2B-mCherry (nucleus) and gp135/Podocalyxin-GFP (apical marker), we show in multi-dimensions that such coordination for epithelial morphogenesis can be determined by cell-soluble ECM interaction in the fluidic phase.

Results: The coordination depends on the native topology of ECM components such as sheet-like basement membrane (BM) and type I collagen (COL) fibres: scaffold formed by BM (COL) facilitates a close-ended (open-ended) coordination that leads to the formation of lobular (tubular) epithelium. Further, cells form apicobasal polarity throughout the entire lobule/tubule without a complete coverage of ECM at the basal side, and time-lapse two-photon scanning imaging reveals the polarization occurring early and maintained through the lobular expansion. During polarization, gp135-GFP was converged to the apical surface collectively in the lobular/tubular structures, suggesting possible intercellular communications. Under suspension culture, the polarization was impaired with multi-lumen formation in the tubules, implying the importance of ECM biomechanical microenvironment.

Conclusion: Our results suggest a biophysical mechanism for cells to form polarity and coordinate positioning at tissue scale, and in engineering epithelium through cell-soluble ECM interaction and self-assembly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8016639PMC
http://dx.doi.org/10.1111/cpr.13014DOI Listing

Publication Analysis

Top Keywords

ecm
8
tissue scale
8
cell-soluble ecm
8
ecm interaction
8
cells form
8
cells
6
cell-extracellular matrix
4
matrix interactions
4
interactions fluidic
4
fluidic phase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!