Dopamine is an important neurotransmitter in the human brain and its altered concentrations can lead to various neurological diseases. We studied the binding of novel compounds at the dopamine D (D R) and D (D R) receptor subtypes, which belong to the D -like receptor family. The synthesis, in silico, and in vitro characterization of 10 dopamine receptor ligands were performed. Novel ligands were docked into the D R and D R crystal structures to examine the precise binding mode. A quantum mechanics/molecular mechanics study was performed to gain insights into the nature of the intermolecular interactions between the newly introduced pentafluorosulfanyl (SF ) moiety and D R and D R. A radioligand displacement assay determined that all of the ligands showed moderate-to-low nanomolar affinities at D R and D R, with a slight preference for D R, which was confirmed in the in silico studies. N-{4-[4-(2-Methoxyphenyl)piperazin-1-yl]butyl}-4-(pentafluoro-λ6-sulfanyl)benzamide (7i) showed the highest D R affinity and selectivity (pK values of 7.14 [D R] and 8.42 [D R]).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ardp.202000486 | DOI Listing |
ACS Chem Neurosci
January 2025
Departments of Psychiatry and Neurology, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University Medical Center, New York, New York 10032, United States.
Voluntary movement, motivation, and reinforcement learning depend on the activity of ventral midbrain neurons, which extend axons to release dopamine (DA) in the striatum. These neurons exhibit two patterns of action potential activity: low-frequency tonic activity that is intrinsically generated and superimposed high-frequency phasic bursts that are driven by synaptic inputs. acute striatal brain preparations are widely employed to study the regulation of evoked DA release but exhibit very different DA release kinetics than recordings.
View Article and Find Full Text PDFJ Clin Med
December 2024
Global Andrology Forum, Moreland Hills, OH 44022, USA.
Hormonal factors play an essential role as an underlying causative factor of oligoasthenoteratozoospermia (OAT), and these patients can benefit from hormonal medications that modulate the hypothalamic-pituitary-gonadal axis. This review aims to outline the various medications used as hormonal therapy in treating infertile men with OAT. This manuscript focuses on essential hormonal evaluation, identifying men who would benefit from treatment, selecting the appropriate medication, determining the duration of therapy, and evaluating hormonal treatment outcomes.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Anatomy, Dokkyo Medical University School of Medicine, 880 Kita-Kobayashi, Mibu-machi, Shimotsuga-gun 321-0293, Tochigi, Japan.
Recent findings have revealed that melanocortin 1 receptor (MC1R) deficiency leads to Parkinson's disease-like dopaminergic neurodegeneration in the substantia nigra (SN). However, its precise distribution and expressing-cell type in the SN remain unclear. Therefore, in this study, we analyzed the localization and characteristics of MC1R in the SN using histological methods, including in situ hybridization and immunohistochemistry.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Osaka 920-1192, Japan.
G protein-coupled receptors (GPCRs) are essential cell surface proteins involved in transducing extracellular signals into intracellular responses, regulating various physiological processes. This study validated the use of the Tango assay, a sensitive method for detecting GPCR activation, in Schneider 2 (S2) cells, focusing on the human Dopamine Receptor D4 (DRD4). Plasmids encoding the LexA-tagged human DRD4 receptor and a luciferase reporter were co-transfected into S2 cells and stimulated with dopamine.
View Article and Find Full Text PDFNeuroscience
January 2025
Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran. Electronic address:
Corticosteroid signaling plays a critical role in modulating the neural systems underlying reward and addiction, but the specific contributions of glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs) in the medial prefrontal cortex (mPFC) to opioid reward and dopaminergic plasticity remain unclear. Here, we investigated the effects of intra-mPFC injection of corticosteroid receptor ligand (corticosterone; CORT), glucocorticoid receptor antagonist (RU38486; RU), and mineralocorticoid receptor antagonist (spironolactone; SP) on morphine-induced conditioned place preference (CPP) and dopamine transporter (DAT) expression in the mPFC. Adult male Wistar rats received intra-mPFC injections of CORT, RU, SP, or their respective vehicles prior to morphine CPP conditioning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!