Background And Objectives: Acanthamoeba keratitis is a sight-threatening infectious disease that is difficult to treat. The aim of this study was to evaluate TONS504 (cationic chlorin derivative photosensitizer)-mediated photodynamic antimicrobial chemotherapy (PACT) in vivo as a potential treatment for Acanthamoeba keratitis.

Study Design/materials And Methods: Acanthamoeba keratitis was induced by soft contact lenses incubated with 1 × 10 /ml Acanthamoeba castellanii, which were placed over debrided corneas with temporary tarsorrhaphy. Thirty-eight male Japanese white rabbits were randomly divided into three groups (normal eye, no treatment, and treatment groups). TONS504 was administered as eye drops at 1 mg/ml, followed by light-emitting diode irradiation after the establishment of keratitis at 7 days after infectious contact lens exposure. All animals were evaluated under a slit-lamp microscope every 3 days for 6 days after the treatment. Clinical scores based on corneal epithelial defects detected by fluorescein staining, stromal opacity edema, and vascular infiltration into the cornea were determined. After 6 days, the eyes were enucleated for histopathological analysis.

Results: Clinical signs of infection in the treatment group were markedly reduced for up to 6 days after treatment. Histopathology showed a regular arrangement of stromal fibers and a small number of inflammatory cells in 58% of the corneas. However, 42% of corneas in the treatment group showed infiltrating neutrophils and irregular alignment of stromal collagen fibers.

Conclusions: Our TONS504-PACT achieved complete recovery from keratitis in 58% of the rabbit models. Further studies are required to determine the conditions for the maximal effectiveness of our TONS504-PACT for Acanthamoeba keratitis. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lsm.23355DOI Listing

Publication Analysis

Top Keywords

acanthamoeba keratitis
16
days treatment
8
treatment group
8
treatment
7
acanthamoeba
6
keratitis
6
days
5
efficacy photodynamic
4
photodynamic anti-microbial
4
anti-microbial chemotherapy
4

Similar Publications

Background: Diseases in humans caused by amphizoic amoebae that can result in visual impairment and even blindness, have recently been identified more frequently worldwide. Etiologically complex incidents of keratitis, including those connected with strains detected in Poland, were evaluated in this study.

Methods: Corneal samples from cases resistant to antimicrobial therapy assessed for epidemiological, microbiological and parasitological aspects were investigated by phase-contrast microscope, slit lamp and by confocal microscopy.

View Article and Find Full Text PDF

Nitroxoline evidence amoebicidal activity against Acanthamoeba castellanii through DNA damage and the stress response pathways.

Int J Parasitol Drugs Drug Resist

January 2025

Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China. Electronic address:

Acanthamoeba castellanii is a widespread unicellular eukaryote found in diverse environments, including tap water, soil, and swimming pools. It is responsible for severe infections, such as Acanthamoeba keratitis and granulomatous amebic encephalitis, particularly in individuals with immunocompromisation. The ability of protozoans to form dormant and persistent cysts complicates treatment, as current therapies are ineffective against cyst stages and suffer from poor specificity and side effects.

View Article and Find Full Text PDF
Article Synopsis
  • Acanthamoeba species are protozoa that can cause serious eye and CNS infections, and current treatments are often ineffective, especially in specific areas like the eye.
  • The study evaluates the effectiveness of ethanolic fruit extract of E. umbellata, silver nanoparticles derived from it, and lauric acid in killing Acanthamoeba trophozoites and protecting DNA from damage.
  • Results show that these treatments can significantly kill trophozoites and prevent DNA damage, suggesting potential new options for treating Acanthamoeba infections.
View Article and Find Full Text PDF

Background: Acanthamoeba keratitis (AK) is the most challenging corneal infection to treat, with conventional therapies often proving ineffective. While photoactivated chromophore for keratitis-corneal cross-linking (PACK-CXL) with riboflavin/UV-A has shown success in treating bacterial and fungal keratitis, and PACK-CXL with rose bengal/green light has demonstrated promise in fungal keratitis, neither approach has been shown to effectively eradicate AK. This case study explores a novel combined same-session treatment approach using both riboflavin/UV-A and rose bengal/green light in a single procedure.

View Article and Find Full Text PDF

Assessment of dynamics of pathogenic environmental T4 and T9 genotypes isolated from three recreational lakes in Klang Valley, Malaysia over the HaCaT cell monolayer.

J Water Health

December 2024

Centre for Medical Laboratory Technology Studies, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam Campus, Selangor, Malaysia; Microbiome Health and Environment (MiHeaRT), Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia E-mail:

Free-living amoebae of the genus are causative agents of keratitis and amoebic encephalitis. They are widely found in various ecological environments. Therefore, the present study brings results that can help to better understand the genotypes of the environmental isolates and their pathogenicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!