The chromosome compaction of chromatin fibers results in the formation of the nucleosome, which consists of a DNA unit coiled around a core of histone molecules associated with linker histone. The compaction of chromatin fibers has been a topic of controversy since the discovery of chromosomes in the 19th century. Although chromatin fibers were first identified using electron microscopy, the chromatin fibers on the surface of chromosome structures in plants remain unclear due to shrinking and breaking caused by prior chromosome isolation or preparation with alcohol and acid fixation, and critical point drying occurred into dehydration and denatured chromosomal proteins. This study aimed to develop a high-quality procedure for the isolation and preparation of plant chromosomes, maintaining the native chromosome structure, to elucidate the organization of chromatin fibers on the surface of plant chromosomes by electron microscopy. A simple technique to isolate intact barley (Hordeum vulgare) chromosomes with a high yield was developed, allowing chromosomes to be observed with a high-resolution scanning ion microscopy and helium ion microscopy (HIM) imaging technology, based on a scanning helium ion beam. HIM images from the surface chromatin fibers were analyzed to determine the size and alignment of the chromatin fibers. The unit size of the chromatin fibers was 11.6 ± 3.5 nm and was closely aligned to the chromatin network model. Our findings indicate that compacting the surface structure of barley via a chromatin network and observation via HIM are powerful tools for investigating the structure of chromatin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10577-021-09649-2 | DOI Listing |
Life Sci Alliance
April 2025
National Cancer Institute, Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Bethesda, MD, USA
Centromeres are marked by the centromere-specific histone H3 variant CENP-A/CENH3. Throughout the cell cycle, the constitutive centromere-associated network is bound to CENP-A chromatin, but how this protein network modifies CENP-A nucleosome conformations in vivo is unknown. Here, we purify endogenous centromeric chromatin associated with the CENP-C complex across the cell cycle and analyze the structures by single-molecule imaging and biochemical assays.
View Article and Find Full Text PDFEpilepsy Res
January 2025
Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China. Electronic address:
Mutations in methyl CpG binding protein 2 (MeCP2) are linked to Rett syndrome, in which epilepsy is one of the most well-described disorders. However, little is known about the specific role of MeCP2 during epileptogenesis. Our previous study has demonstrated that MeCP2 has a unique control on the development of mossy fiber sprouting (MFS) in the epileptic hippocampus.
View Article and Find Full Text PDFBiophys Rev
December 2024
Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain.
In recent decades, research on mechanotransduction has advanced considerably, focusing on the effects of audible acoustic waves (AAWs) and low-vibration stimulation (LVS), which has propelled the field of sonobiology forward. Taken together, the current evidence demonstrates the influence of these biosignals on key cellular processes, such as growth, differentiation and migration in mammalian cells, emphasizing the determining role of specific physical parameters during stimulation, such as frequency, sound pressure level/amplitude and exposure time. These mechanical waves interact with various cellular elements, including ion channels, primary cilia, cell-cell adhesion receptors, cell-matrix and extracellular matrix proteins, and focal adhesion complexes.
View Article and Find Full Text PDFGenomics
January 2025
Microbe Interactomics Group, Dept. Animal Sciences, Wageningen University & Research (WUR), Wageningen, the Netherlands. Electronic address:
This study investigates the impact of maternal gestation diets with varying fiber contents on gene expression and chromatin accessibility in fetuses and piglets fed a low fiber diet post weaning. High-fiber maternal diets, enriched with sugar beet pulp or pea internal fiber, were compared to a low-fiber maternal diet to evaluate their effects on liver and muscle tissues. The findings demonstrate that maternal high-fiber diets significantly alter chromatin accessibility, predicted transcription factor activity and transcriptional landscape in both fetuses and piglets.
View Article and Find Full Text PDFbioRxiv
January 2025
Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France.
Transcription introduces torsional stress in the DNA fiber causing it to transition from a relaxed to a supercoiled state that can propagate across several kilobases and modulate the binding and activity of DNA-associated proteins. As a result, transcription at one locus has the potential to impact nearby transcription events. In this study, we asked how DNA supercoiling affects histone modifications and transcription of neighboring genes in the multicellular eukaryote .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!