Hydrogen fuel can contribute as a masterpiece in conceiving a robust carbon-free economic puzzle if cleaner methods to produce hydrogen become technically efficient and economically viable. Organic photocatalytic materials such as conjugated microporous materials (CMPs) are potential attractive candidates for water splitting as their energy levels and optical band gap as well as porosity are tunable through chemical synthesis. The performances of CMPs depend also on the mass transfer of reactants, intermediates, and products. Here, we study the mass transfer of water (HO and DO) and of triethylamine, which is used as a hole scavenger for hydrogen evolution, by means of neutron spectroscopy. We find that the stiffness of the nodes of the CMPs is correlated with an increase in trapped water, reflected by motions too slow to be quantified by quasi-elastic neutron scattering (QENS). Our study highlights that the addition of the polar sulfone group results in additional interactions between water and the CMP, as evidenced by inelastic neutron scattering (INS), leading to changes in the translational diffusion of water, as determined from the QENS measurements. No changes in triethylamine motions could be observed within the CMPs from the present investigations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887872PMC
http://dx.doi.org/10.1021/acsapm.0c01070DOI Listing

Publication Analysis

Top Keywords

mass transfer
12
transfer water
8
conjugated microporous
8
neutron spectroscopy
8
neutron scattering
8
water
6
impact chemical
4
chemical structure
4
structure dynamics
4
dynamics mass
4

Similar Publications

Dipicolylamine Derivatives Bearing Pyrene and Anthracene as Molecular Probes for Cu and HS.

J Fluoresc

January 2025

Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue East Road, Nanning, Guangxi, 530004, China.

Two dipicolylamine (DPA) derivatives with the pyrene and anthracene groups, 1-(pyren-1-yl)-N, N-bis-(pyridine-2-ylmethyl)benzylamine (L1) and 1-(anthracen-9-yl)-N, N-bis-(pyridine-2-ylmethyl)benzylamine (L2) were synthesized, characterized, and their affinitive properties for metal ions were studied. The mass spectroscopy and Job's plots showed that L1 and L2 reacted with Cu and formed complexes [Cu(L1)(solvent)] (L1-Cu) and [Cu(L2)(solvent)] (L2-Cu), respectively. Both L1 and L2 were fluorescent probes recognizing Cu via the emission quenching and further detecting HS via the emission revival.

View Article and Find Full Text PDF

Self-cleaning applications based on bionic surface designs requires an in-depth understanding of unique and complex wetting and evaporation processes of sessile droplets on natural biosurfaces. To this end, hydrophobic bamboo and Kalanchoe blossfeldiana leaves are excellent candidates for self-cleaning applications, but various properties, such as the heat and mass transfer processes during evaporation, remain unknown. Here, the dynamics of contact angle, radius, and heat and mass transfer during evaporation of sessile droplets on bamboo and Kalanchoe blossfeldiana leaves with roughness in the range 2.

View Article and Find Full Text PDF

Cryo-EM structure of the conjugation H-pilus reveals the cyclic nature of the TrhA pilin.

bioRxiv

December 2024

Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, UK.

Conjugation, the major driver of the spread of antimicrobial resistance genes, relies on a conjugation pilus for DNA transfer. Conjugative pili, such as the F-pilus, are dynamic tubular structures, composed of a polymerized pilin, that mediate the initial donor-recipient interactions, a process known as mating pair formation (MPF). IncH are low-copy-number plasmids, traditionally considered broad host range, which are found in bacteria infecting both humans and animals.

View Article and Find Full Text PDF

Electrospinning based biomaterials for biomimetic fabrication, bioactive protein delivery and wound regenerative repair.

Regen Biomater

December 2024

Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany.

Electrospinning is a remarkably straightforward and adaptable technique that can be employed to process an array of synthetic and natural materials, resulting in the production of nanoscale fibers. It has emerged as a novel technique for biomedical applications and has gained increasing popularity in the research community in recent times. In the context of tissue repair and tissue engineering, there is a growing tendency toward the integration of biomimetic scaffolds and bioactive macromolecules, particularly proteins and growth factors.

View Article and Find Full Text PDF

Tracing the change of the volatile compounds of soy sauce at different fermentation times by PTR-TOF-MS, -nose and GC-MS.

Food Chem X

January 2025

Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.

Proton-transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS), combined with electronic nose (-nose), was first used to track the change of volatile organic compounds (VOCs) in soy sauce in this study. The results showed that 163 VOCs with different mass numbers were identified. Based on the differences in VOCs, the entire fermentation cycle was divided into four stages (0D and 15D; 30D-75D; 90D; 105D-120D).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!