AI Article Synopsis

  • Inflammatory bowel diseases (IBD), including ulcerative colitis and Crohn's disease, involve chronic inflammation of the gastrointestinal tract, leading to significant immune cell infiltration and tissue damage.
  • Current treatments range from traditional medications to biologics, with the latter, like anti-TNF therapies (e.g., infliximab), targeting specific inflammatory pathways, although up to 40% of patients may not respond.
  • Newer biologics, such as vedolizumab, aim to reduce inflammation by targeting leukocyte trafficking without risking severe side effects, though the exact mechanisms of action of vedolizumab in blocking T-cell recruitment remain unclear.

Article Abstract

Inflammatory bowel diseases (IBD), encompassing ulcerative colitis (UC), and Crohn's disease (CD), are a group of disorders characterized by chronic, relapsing, and remitting, or progressive inflammation along the gastrointestinal tract. IBD is accompanied by massive infiltration of circulating leukocytes into the intestinal mucosa. Leukocytes such as neutrophils, monocytes, and T-cells are recruited to the affected site, exacerbating inflammation and causing tissue damage. Current treatments used to block inflammation in IBD include aminosalicylates, corticosteroids, immunosuppressants, and biologics. The first successful biologic, which revolutionized IBD treatment, targeted the pro-inflammatory cytokine, tumor necrosis factor alpha (TNFα). Infliximab, adalimumab, and other anti-TNF antibodies neutralize TNFα, preventing interactions with its receptors and reducing the inflammatory response. However, up to 40% of people with IBD become unresponsive to anti-TNFα therapy. Thus, more recent biologics have been designed to block leukocyte trafficking to the inflamed intestine by targeting integrins and adhesins. For example, natalizumab targets the α4 chain of integrin heterodimers, α4β1 and α4β7, on leukocytes. However, binding of α4β1 is associated with increased risk for developing progressive multifocal leukoencephalopathy, an often-fatal disease, and thus, it is not used to treat IBD. To target leukocyte infiltration without this life-threatening complication, vedolizumab was developed. Vedolizumab specifically targets the α4β7 integrin and was approved to treat IBD based on the presumption that it would block T-cell recruitment to the intestine. Though vedolizumab is an effective treatment for IBD, some studies suggest that it may not block T-cell recruitment to the intestine and its mechanism(s) of action remain unclear. Vedolizumab may reduce inflammation by blocking recruitment of T-cells, or pro-inflammatory monocytes and dendritic cells to the intestine, and/or vedolizumab may lead to changes in the programming of innate and acquired immune cells dampening down inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887288PMC
http://dx.doi.org/10.3389/fcell.2021.612830DOI Listing

Publication Analysis

Top Keywords

mechanisms action
8
inflammatory bowel
8
bowel diseases
8
ibd
8
treat ibd
8
block t-cell
8
t-cell recruitment
8
recruitment intestine
8
vedolizumab
6
inflammation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!