Short-term prediction through ordinal patterns.

R Soc Open Sci

The STS Program, Bar-Ilan University, Ramat-Gan, Israel.

Published: January 2021

Prediction in natural environments is a challenging task, and there is a lack of clarity around how a myopic organism can make short-term predictions given limited data availability and cognitive resources. In this context, we may ask what kind of resources are available to the organism to help it address the challenge of short-term prediction within its own cognitive limits. We point to one potentially important resource: , which are extensively used in physics but not in the study of cognitive processes. We explain the potential importance of ordinal patterns for short-term prediction, and how natural constraints imposed through (i) ordinal pattern types, (ii) their transition probabilities and (iii) their irreversibility signature may support short-term prediction. Having tested these ideas on a massive dataset of Bitcoin prices representing a highly fluctuating environment, we provide preliminary empirical support showing how organisms characterized by bounded rationality may generate short-term predictions by relying on ordinal patterns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890473PMC
http://dx.doi.org/10.1098/rsos.201011DOI Listing

Publication Analysis

Top Keywords

short-term prediction
16
ordinal patterns
12
prediction natural
8
short-term predictions
8
short-term
6
ordinal
4
prediction ordinal
4
prediction
4
patterns prediction
4
natural environments
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!