Chlorpyrifos (CPF) is an organophosphate insecticide commonly used to treat fruit and vegetable crops. CPF can cause severe adverse effects on body organs including the liver and central nervous system. This study investigated the CPF-induced inflammation in mice and explored the role of intestinal flora changes in liver inflammation. Adult C57BL/6 male mice were exposed to a CPF of 0.01-, 0.1-, 1- and 10-mg/kg bodyweight for 12 weeks. The mice in experimental group given CPF solution dissolved in corn oil vehicle by gavage, was administered by intraoral gavage for 5 days per week for 12 weeks. Histopathological examination and inflammatory factor detection were performed on mice liver tissue. Faeces were used for 16S ribosomal RNA high-throughput sequencing to explore the impact of CPF on intestinal flora structure and diversity. The results showed that 1- and 10-mg/kg CPF caused different degrees of liver focal inflammation. The structure of intestinal flora changed significantly in mice including the decreased beneficial bacteria (Akkermansia, Prevotella and Butyricimonas) and increased pathogenic bacteria (Helicobacter and Desulfovibrio). Meanwhile, the results of Q-RT-PCR showed that there was more total bacterial DNA in the liver tissue of the mice treated with 10-mg/kg groups. In conclusion, the imbalance of intestinal flora, the decreased abundance of beneficial bacteria and the increased abundance of pathogenic bacteria, as well as the increase of total bacterial DNA in the liver tissues, maybe associated with the liver focal inflammation induced by CPF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7885312PMC
http://dx.doi.org/10.1093/toxres/tfaa108DOI Listing

Publication Analysis

Top Keywords

intestinal flora
20
liver
8
liver inflammation
8
flora structure
8
liver tissue
8
liver focal
8
focal inflammation
8
beneficial bacteria
8
pathogenic bacteria
8
total bacterial
8

Similar Publications

Chronic Kidney Disease (CKD) is one of the most common conditions affecting felines, yet the metabolic alterations underlying its pathophysiology remain poorly understood, hindering progress in identifying biomarkers and therapeutic targets. This study aimed to provide a comprehensive view of metabolic changes in feline CKD across conserved biochemical pathways and evaluate their progression throughout the disease continuum. Using a multi-biomatrix high-throughput metabolomics approach, serum and urine samples from CKD-affected cats ( = 94) and healthy controls ( = 84) were analyzed with ultra-high-performance liquid chromatography-high-resolution mass spectrometry.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a complex metabolic disease characterized by hyperglycemia. Recently, the incidence of diabetes has increased exponentially, and it is estimated to become the seventh leading cause of global mortality by 2030. Glucagon-like peptide-1 (GLP-1), a hormone derived from the intestine, has been demonstrated to exert remarkable hypoglycemic effects.

View Article and Find Full Text PDF

Dogs are increasingly recognized as valuable large animal models for understanding human intestinal diseases, as they naturally develop conditions similar to those in humans, such as Enterohemorrhagic , , inflammatory bowel disease, and ulcerative colitis. Given the similarity in gut flora between dogs and humans, canine intestinal models are ideal for translational research. However, conventional extracellular matrix-embedded organoids present challenges in accessing the lumen, which is critical for gut function.

View Article and Find Full Text PDF

Introduction: This study aimed to investigate the effects of Isalo scorpion cytotoxic peptide (IsCT) on the growth performance, immune function, and gut microbiota of yellow-feathered broilers.

Methods: The experiment involved supplementing a corn-soybean meal-based diet with various dietary levels of IsCT. The experiment adopted a completely randomized design.

View Article and Find Full Text PDF

The interplay between multiple organs, known as inter-organ crosstalk, represents a complex and essential research domain in understanding the mechanisms and therapies for kidney diseases. The kidneys not only interact pathologically with many other organs but also communicate with other systems through various signaling pathways. It is of paramount importance to comprehend these mechanisms for the development of more efficient therapeutic strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!