Epigenetic modifications play an important role in central nervous system disorders. As a widespread posttranscriptional RNA modification, the role of the mC modification in cerebral ischemia-reperfusion injury (IRI) remains poorly defined. Here, we successfully constructed a neuronal oxygen-glucose deprivation/reoxygenation (OGD/R) model and obtained an overview of the transcriptome-wide mC profiles using RNA-BS-seq. We discovered that the distribution of neuronal mC modifications was highly conserved, significantly enriched in CG-rich regions and concentrated in the mRNA translation initiation regions. After OGD/R, modification level of mC increased, whereas the number of methylated mRNA genes decreased. The amount of overlap of mC sites with the binding sites of most RNA-binding proteins increased significantly, except for that of the RBM3-binding protein. Moreover, hypermethylated genes in neurons were significantly enriched in pathological processes, and the hub hypermethylated genes RPL8 and RPS9 identified by the protein-protein interaction network were significantly related to cerebral injury. Furthermore, the upregulated transcripts with hypermethylated modification were enriched in the processes involved in response to stress and regulation of apoptosis, and these processes were not identified in hypomethylated transcripts. In final, we verified that OGD/R induced neuronal apoptosis using TUNEL and western blot assays. Our study identified novel mC mRNAs associated with ischemia-reperfusion in neurons, providing valuable perspectives for future studies on the role of the RNA methylation in cerebral IRI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887326PMC
http://dx.doi.org/10.3389/fgene.2021.633681DOI Listing

Publication Analysis

Top Keywords

hypermethylated genes
8
modification
5
alteration mrna
4
mrna 5-methylcytosine
4
5-methylcytosine modification
4
modification neurons
4
ogd/r
4
neurons ogd/r
4
ogd/r potential
4
potential roles
4

Similar Publications

Extensive methylation analysis of circulating tumor DNA in plasma of patients with gastric cancer.

Sci Rep

December 2024

Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan.

DNA methylation is known to be involved in tumor progression. This is the first study to perform an extensive methylation analysis of plasma circulating tumor DNA (ctDNA) using targeted bisulfite sequencing in gastric cancer (GC) patients to evaluate the usefulness of ctDNA methylation as a new biomarker. Sixteen patients who received chemotherapy for recurrent GC were included.

View Article and Find Full Text PDF

This study aimed to investigate the expression, prognostic significance, methylation, and immune invasion levels of secreted frizzled-related proteins (SFRP1-5) in colorectal cancer (CRC). Additionally, the relationship between SFRP1/2 methylation and immune infiltration in CRC was explored. The expression of SFRP1-5 was analyzed using several databases, including GEO, TCGA, TIMER, STRING, and GEPIA.

View Article and Find Full Text PDF

Early weaning management followed by energy supplementation can lead to metabolic alterations in the calf that exert long-term effects on the animal's health and performance. It is believed that the main molecular basis underlying these metabolic adaptations are epigenetic mechanisms that regulate, activate, or silence genes at different stages of development and/or in response to different environmental stimuli. However, little is known about postnatal metabolic programming in .

View Article and Find Full Text PDF

Mutations in tumor suppressor genes Vhl and Rassf1a cause DNA damage, chromosomal instability and induce gene expression changes characteristic of clear cell renal cell carcinoma.

Kidney Int

December 2024

Clinic of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site, Freiburg; Signalling Research Centres BIOSS and CIBSS, Faculty of Biology University of Freiburg, Freiburg, Germany. Electronic address:

RASSF1A is frequently biallelically inactivated in clear cell renal cell carcinoma (ccRCC) due to loss of chromosome 3p and promoter hypermethylation. Here we investigated the cellular and molecular consequences of single and combined deletion of the Rassf1a and Vhl tumor suppressor genes to model the common ccRCC genotype of combined loss of function of RASSF1A and VHL. In mouse embryonic fibroblasts and in primary kidney epithelial cells, double deletion of Rassf1a and Vhl caused chromosomal segregation defects and increased formation of micronuclei, demonstrating that pVHL and RASSF1A function to maintain genomic integrity.

View Article and Find Full Text PDF

Atherosclerosis and aneurysm of the aorta are relatively common pathological conditions that remain asymptomatic for a long period of time and have life-threatening and disabling complications. DNA methylation profiling in several regions (a dilated area, a nondilated area, and an atherosclerotic plaque) of the ascending aorta was carried out in patients with aortic aneurysm. DNA methylation was analyzed by reduced representation bisulfite sequencing (RRBS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!