Lipopolysaccharide (LPS) has been implicated as a major cause of inflammation and an uncontrolled LPS response increases the risk of localized inflammation and sepsis. While some native peptides are helpful in the treatment of LPS-induced inflammation, the use of these peptides is limited due to their potential cytotoxicity and poor anti-inflammatory activity. Hybridization is an effective approach for overcoming this problem. In this study, a novel hybrid anti-inflammatory peptide that combines the active center of Cathelicidin 2 (CATH2) with thymopentin (TP5) was designed [CTP, CATH2 (1-13)-TP5]. CTP was found to have higher anti-inflammatory effects than its parental peptides through directly LPS neutralization. However, CTP scarcely inhibited the attachment of LPS to cell membranes or suppressed an established LPS-induced inflammation due to poor cellular uptake. The C-terminal amine modification of CTP (CTP-NH) was then designed based on the hypothesis that C-terminal amidation can enhance the cell uptake by increasing the hydrophobicity of the peptide. Compared with CTP, CTP-NH showed enhanced anti-inflammatory activity and lower cytotoxicity. CTP-NH not only has strong LPS neutralizing activity, but also can significantly inhibit the LPS attachment and the intracellular inflammatory response. The intracellular anti-inflammatory effect of CTP-NH was associated with blocking of LPS binding to the Toll-like receptor 4-myeloid differentiation factor 2 complex and inhibiting the nuclear factor-kappa B pathway. In addition, the anti-inflammatory effect of CTP-NH was confirmed using a murine LPS-induced sepsis model. Collectively, these findings suggest that CTP-NH could be developed into a novel anti-inflammatory drug. This successful modification provides a design strategy to improve the cellular uptake and anti-inflammatory activity of peptide agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892475 | PMC |
http://dx.doi.org/10.3389/fimmu.2020.618312 | DOI Listing |
Front Immunol
January 2025
Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
Introduction: Ulcerative colitis (UC) is a chronic inflammatory disease. Patients with UC typically exhibit disruption of the Treg/Th17 immune axis, but its exact mechanism is still unclear.
Methods: This study first analyzed RNA- seq data from public databases of humans and mice, and cytology experiments were conducted to induce or inhibit the expression of SIRT1.
Food Sci Nutr
January 2025
Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University Urumqi Xinjiang China.
a member of the family, is known for its diverse biological activities, including anti-inflammatory properties. The mechanisms through which polysaccharide (LTP) induces autophagy, however, remain largely unexplored. This study aims to elucidate the role of LTP in autophagy induction and its efficacy in mitigating inflammation within macrophages.
View Article and Find Full Text PDFActa Biomater
January 2025
Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Public Health, Tianjin Medical University, Tianjin 300070, China. Electronic address:
For biomedical applications, two-dimensional transition metal dichalcogenides (2D TMDCs) are often combined with other elements or functionalized with specific surface ligands, while their intrinsic biological activities are not yet fully understood. This study investigates the anti-inflammatory potential of four unmodified 2D TMDCs, including WS, WSe, NbS, and NbSe nanosheets, in LPS-activated MH-S cells in vitro and in a mouse model of pulmonary inflammation in vivo. Despite their varying compositions, these 2D TMDCs exhibited comparable anti-inflammatory effects in LPS-activated MH-S cells.
View Article and Find Full Text PDFAm J Pathol
January 2025
Department of Pulmonary and Critical Care Medicine, Renmin Hospital of Wuhan University, 430060, Wuhan, China. Electronic address:
Acute lung injury (ALI) is a clinically common disease with high mortality, characterized by tissue damage caused by excessive activation of inflammation. TRIM7 is an E3 ligase that plays an important role in regulating viral infection, tumor progression and innate immune response. But its function in ALI is unclear.
View Article and Find Full Text PDFImmunobiology
January 2025
Department of Pediatrics, Chinese and Western Medicine Hospital of Panzhihua, Panzhihua 617099, China.
Severe community-acquired pneumonia (SCAP) significantly threats the safety of children's lives. Long non-coding RNA (lncRNA) MANCR is overexpressed in lung adenocarcinoma (LUAD) tissue, promote the proliferation, invasion, and migration, decreased cell apoptosis of LUAD cells. This study aimed to detect lncRNA MANCR levels in pediatric SCAP, and explore the diagnostic and prognostic significance of MANCR in pediatric SCAP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!