The integrity of the motor system can be examined by applying navigated transcranial magnetic stimulation (nTMS) to the cortex. The corresponding motor-evoked potentials (MEPs) in the target muscles are mirroring the status of the human motor system, far beyond corticospinal integrity. Commonly used time domain features of MEPs (e.g., peak-to-peak amplitudes and onset latencies) exert a high inter-subject and intra-subject variability. Frequency domain analysis might help to resolve or quantify disease-related MEP changes, e.g., in brain tumor patients. The aim of the present study was to describe the time-frequency representation of MEPs in brain tumor patients, its relation to clinical and imaging findings, and the differences to healthy subject. This prospective study compared 12 healthy subjects with 12 consecutive brain tumor patients (with and without a paresis) applying nTMS mapping. Resulting MEPs were evaluated in the time series domain (i.e., amplitudes and latencies). After transformation into the frequency domain using a Morlet wavelet approach, event-related spectral perturbation (ERSP), and inter-trial coherence (ITC) were calculated and compared to diffusion tensor imaging (DTI) results. There were no significant differences in the time series characteristics between groups. MEPs were projecting to a frequency band between 30 and 300 Hz with a local maximum around 100 Hz for both healthy subjects and patients. However, there was ERSP reduction for higher frequencies (>100 Hz) in patients in contrast to healthy subjects. This deceleration was mirrored in an increase of the inter-peak MEP latencies. Patients with a paresis showed an additional disturbance in ITC in these frequencies. There was no correlation between the CST integrity (as measured by DTI) and the MEP parameters. Time-frequency analysis may provide additional information above and beyond classical MEP time domain features and the status of the corticospinal system in brain tumor patients. This first evaluation indicates that brain tumors might affect cortical physiology and the responsiveness of the cortex to TMS resulting in a temporal dispersion of the corticospinal transmission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894199PMC
http://dx.doi.org/10.3389/fneur.2020.633224DOI Listing

Publication Analysis

Top Keywords

brain tumor
20
tumor patients
20
healthy subjects
12
time-frequency representation
8
patients
8
motor system
8
time domain
8
domain features
8
frequency domain
8
patients paresis
8

Similar Publications

Parkinson's disease (PD) is a limb movement disorder caused by the degeneration of brain neurons and seriously affects the quality of life of the elderly. However, the current drugs are symptomatic treatments that cannot prevent or delay the development of the disease. Targeted therapy for pathogenesis may be the direction of development in the future.

View Article and Find Full Text PDF

DET induces apoptosis and suppresses tumor invasion in glioma cells via PI3K/AKT pathway.

Front Oncol

January 2025

The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China.

Introduction: Gliomas, particularly glioblastomas (GBM), are highly aggressive with a poor prognosis and low survival rate. Currently, deoxyelephantopin (DET) has shown promising anti-inflammatory and anti-tumor effects. Using clinical prognostic analysis, molecular docking, and network pharmacology, this study aims to explore the primary targets and signaling pathways to identify novel GBM treatment approaches.

View Article and Find Full Text PDF

•Defining the concept of "onco-functional" balance.•Detailing the clinical implications in brain tumor surgery.•Discussing the future of this philosophy.

View Article and Find Full Text PDF

The article provides an overview of the current understanding of the interplay between metabolic pathways and immune function in the context of triple-negative breast cancer (TNBC). It highlights recent advancements in single-cell and spatial transcriptomics technologies, which have revolutionized the analysis of tumor heterogeneity and the immune microenvironment in TNBC. The review emphasizes the crucial role of metabolic reprogramming in modulating immune cell function, discussing how specific metabolic pathways, such as glycolysis, lipid metabolism, and amino acid metabolism, can directly impact the activity and phenotypes of various immune cell populations within the TNBC tumor microenvironment.

View Article and Find Full Text PDF

Purpose In linac-based stereotactic radiosurgery (SRS) utilizing a multileaf collimator (MLC) for brain metastases (BMs), a volumetric-modulated arc (VMA) technique is indispensable for generating a suitable dose distribution with efficient planning and delivery. However, the optimal calculation grid spacing (GS) and statistical uncertainty (SU) of the Monte Carlo algorithm for VMA optimization have yet to be determined. This planning study aimed to examine the impacts of GS and GU settings on VMA-based SRS planning and to find the optimal combination for templating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!