Alzheimer's disease (AD) is a neurodegenerative disease characterized by an excessive inflammatory response and impaired memory retrieval, including spatial memory, recognition memory, and emotional memory. Acquisition and retrieval of fear memory help one avoid dangers and natural threats. Thus, it is crucial for survival. AD patients with impaired retrieval of fear memory are vulnerable to dangerous conditions. Excessive expression of inflammatory markers is known to impede synaptic transmission and reduce the efficiency of memory retrieval. In wild-type mice, reducing inflammation response can improve fear memory retrieval; however, this effect of this approach is not yet investigated in 3xTg-AD model mice. To date, no satisfactory drug or treatment can attenuate the symptoms of AD despite numerous efforts. In the past few years, the direction of therapeutic drug development for AD has been shifted to natural compounds with anti-inflammatory effect. In the present study, we demonstrate that the compound 4-(phenylsulfanyl) butan-2-one (4-PSB-2) is effective in enhancing fear memory retrieval of wild-type and 3xTg-AD mice by reducing the expression of TNF-α, COX-2, and iNOS. We also found that 4-PSB-2 helps increase dendritic spine density, postsynaptic density protein-95 (PSD-95) expression, and long-term potentiation (LTP) in the hippocampus of 3xTg-AD mice. Our study indicates that 4-PSB-2 may be developed as a promising therapeutic compound for treating fear memory impairment of AD patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7888344 | PMC |
http://dx.doi.org/10.3389/fnagi.2021.615079 | DOI Listing |
Behav Brain Res
December 2024
Departament de Biologia, Universitat de Girona, Girona, Spain. Electronic address:
Background: Post-traumatic stress disorder (PTSD) causes intrusive symptoms and avoidance behaviours due to dysregulation in various brain regions, including the hippocampus. Deep brain stimulation (DBS) shows promise for refractory PTSD cases. In rodents, DBS improves fear extinction and reduces anxiety-like behaviours, but its effects on active-avoidance extinction remain unexplored.
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China. Electronic address:
Ethnopharmacological Relevance: Epimedium Tourn. ex L. is a traditional Chinese medicine used for thousands of years in China to treat forgetfulness.
View Article and Find Full Text PDFBiol Psychol
December 2024
Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; ICREA, Barcelona, Spain. Electronic address:
Women are known to have twice as much lifetime prevalence of post-traumatic stress disorder (PTSD) as men do. It has been reported that the risk genotype (CC) of a single nucleotide polymorphism (SNP) (rs2267735) in the pituitary adenylate cyclase-activating polypeptide (PACAP-PAC1R) system is associated with PTSD risk and altered fear conditioning and fear extinction in women. Surprisingly, no previous work has studied the effect of this SNP on fear conditioning, extinction, or generalization in non-traumatized/low trauma load women.
View Article and Find Full Text PDFJ Neurosci
December 2024
Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
Excitatory synapses and the actin-rich dendritic spines on which they reside are indispensable for information processing and storage in the brain. In the adult hippocampus, excitatory synapses must balance plasticity and stability to support learning and memory. However, the mechanisms governing this balance remain poorly understood.
View Article and Find Full Text PDFNeuropharmacology
December 2024
Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany.
Neuropeptide Y (NPY) is the most abundant neuropeptide in the brain. It exerts anxiolytic and anticonvulsive actions, reduces stress and suppresses fear memory. While its effects at the behavioral and cellular levels have been well studied, much less is known about the modulation of physiological activity patterns at the network level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!