Three-dimensional (3D) bioprinting is a promising technology to produce tissue-like structures, but a lack of diversity in bioinks is a major limitation. Ideally each cell type would be printed in its own customizable bioink. To fulfill this need for a universally applicable bioink strategy, we developed a versatile, bioorthogonal bioink crosslinking mechanism that is cell compatible and works with a range of polymers. We term this family of materials UNIversal, Orthogonal Network (UNION) bioinks. As demonstration of UNION bioink versatility, gelatin, hyaluronic acid (HA), recombinant elastin-like protein (ELP), and polyethylene glycol (PEG) were each used as backbone polymers to create inks with storage moduli spanning 200 to 10,000 Pa. Because UNION bioinks are crosslinked by a common chemistry, multiple materials can be printed together to form a unified, cohesive structure. This approach is compatible with any support bath that enables diffusion of UNION crosslinkers. Both matrix-adherent human corneal mesenchymal stromal cells and non-matrix-adherent human induced pluripotent stem cell-derived neural progenitor spheroids were printed with UNION bioinks. The cells retained high viability and expressed characteristic phenotypic markers after printing. Thus, UNION bioinks are a versatile strategy to expand the toolkit of customizable materials available for 3D bioprinting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7888563 | PMC |
http://dx.doi.org/10.1002/adfm.202007983 | DOI Listing |
The scarcity of human donor corneal graft tissue worldwide available for corneal transplantation necessitates the development of alternative therapeutic strategies for treating patients with corneal blindness. Corneal stromal stem cells (CSSCs) have the potential to address this global shortage by allowing a single donor cornea to treat multiple patients. To directly deliver CSSCs to corneal defects within an engineered biomatrix, we developed a UNIversal Orthogonal Network (UNION) collagen bioink that crosslinks with a bioorthogonal, covalent chemistry.
View Article and Find Full Text PDFBiomater Adv
December 2024
Department of Stomatology, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing 100730, China. Electronic address:
The field of bone tissue engineering (BTE) has witnessed a revolutionary breakthrough with the advent of three-dimensional (3D) bioprinting technology, which is considered an ideal choice for constructing scaffolds for bone regeneration. The key to realizing scaffold biofunctions is the selection and design of an appropriate bioink, and existing bioinks have significant limitations. In this study, a composite bioink based on natural polymers (gelatin and alginate) and liver decellularized extracellular matrix (LdECM) was developed and used to fabricate scaffolds for BTE using 3D bioprinting.
View Article and Find Full Text PDFBiomimetics (Basel)
July 2024
Jesús Usón Minimally Invasive Surgery Centre, Carretera N-521, km41.8, 10071 Cáceres, Spain.
3D bioprinting is a promising technique for creating artificial tissues and organs. One of the main challenges of bioprinting is cell damage, due to high pressures and tensions. During the biofabrication process, extrusion bioprinting usually results in low cell viability, typically ranging from 40% to 80%, although better printing performance with higher cell viability can be achieved by optimising the experimental design and operating conditions, with nozzle geometry being a key factor.
View Article and Find Full Text PDFAdv Healthc Mater
October 2024
Stem Cells and Aging Group, Biogipuzkoa Health Research Institute, Paseo Dr. Begiristain s/n, Donostia-San Sebastián, 20014, Spain.
There is an unmet need for in vitro cancer models that emulate the complexity of human tissues. 3D-printed solid tumor micromodels based on decellularized extracellular matrices (dECMs) recreate the biomolecule-rich matrix of native tissue. Herein a 3D in vitro metastatic melanoma model that is amenable for drug screening purposes and recapitulates features of both the tumor and the skin microenvironment is described.
View Article and Find Full Text PDFSci Adv
June 2024
State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
The utilization of three-dimensional (3D) bioprinting technology to create a transplantable bioartificial liver emerges as a promising remedy for the scarcity of liver donors. This study outlines our strategy for constructing a 3D-bioprinted liver, using in vitro-expanded primary hepatocytes recognized for their safety and enhanced functional robustness as hepatic cell sources for bioartificial liver construction. In addition, we have developed bioink biomaterials with mechanical and rheological properties, as well as printing capabilities, tailored for 3D bioprinting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!