The practice of smash-ridging on dry land crop cultivation has shown much promise. However, the mechanism how does soil functionality and root traits can affect rice yield under smash ridge tillage with reduced nitrogen fertilization have not yet been explored. To fill this knowledge gap, we used three tillage methods-smash-ridging 40 cm (S40), smash-ridging 20 cm (S20), and traditional turn-over plowing 20 cm (T)-and two rice varieties (hybrid rice and conventional rice) and measured soil quality, root traits, rice yield and their correlation analysis at different growth stages. Soil physical and chemical properties were significantly improved by smash-ridging, including improvements in root morphological and physiological traits during three growth stages compared with T. S40 had the highest leaf area index (LAI), plant height (PH), and biomass accumulation (BA). Increment in biomass and panicle number (PN) resulted in higher grain yield (GY) of 6.9-9.4% compared with T. Correlation analysis revealed that root total absorption area (RTAA), root active absorption area (RAA), and root area ratio (RAR) were strongly correlated with soil quality. Root injury flow (RIF) and root biomass accumulation (RBA) were strongly correlated with LAI and above-ground plant biomass accumulation (AGBA). Conclusively, S40 is a promising option for improving soil quality, root traits, and consequently GY.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7878828 | PMC |
http://dx.doi.org/10.1016/j.sjbs.2020.11.054 | DOI Listing |
J Genet Genomics
January 2025
Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA. Electronic address:
The QTL by environment interaction (Q×E) effect is hard to detect because there are no effective ways to control the genomic background. In this study, we propose a novel linear mixed model that simultaneously analyzes data from multiple environments to detect Q×E interactions. This model incorporates two different kinship matrices derived from the genome-wide markers to control both main and interaction polygenic background effects.
View Article and Find Full Text PDFZ Naturforsch C J Biosci
January 2025
Department of Biotechnology, 502852 School of Life Science and Biotechnology, Adamas University, Barasat, Kolkata 700126, India.
Drought stress remains a serious concern in L. var , cultivar Satabdi (IET4786) production, particularly during the earliest growth phases, ultimately affecting yield due to the recent trend of delayed rain arrival in West Bengal, India. This study aimed to develop a cost-effective strategy to improve the drought tolerance capacity of rice seedlings by priming the seeds with flavonoid-enriched extract (FEE) of French marigold () petals to withstand the initial drought milieu.
View Article and Find Full Text PDFMol Breed
January 2025
Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China.
Unlabelled: Previous studies illustrated that two banana GA20 oxidase2 (MaGA20ox2) genes, and , are implicated in controlling banana growth and development; however, the biological function of each gene remains unknown. Ma04g15900 protein (termed MaGA20ox2f in this article) is the closest homolog to the Rice SD1 (encoded by 'green revolution gene', ) in the banana genome. The expression of is confined to leaves, peduncles, fruit peels, and pulp.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China. Electronic address:
In farmland shelterbelt systems, the decomposition and/or apoptosis of forest fine root litter could affect farmland soil properties at the tree-crop interface, particularly the soil nitrogen (N) cycling. However, how fine root litter affect the ammonia (NH) and nitrous oxide (NO) losses from farmland soil and the crop production is little known. A soil column experiment covering a whole rice season was conducted to evaluate the dynamics aforesaid in response to fine root litter of Populus (RP) and Metasequoia glyptostroboides (RM) with 0 and 240 kg ha N fertilizer input.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Dept. of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
Rice salt tolerance is highly anticipated to meet global demand in response to decreasing farmland and soil salinization. Therefore, dissecting the genetic loci controlling salt tolerance in rice for improving productivity is of utmost importance. Here, we evaluated six salt-tolerance-related traits of a biparental mapping population comprising 280 F2 rice individuals (Oryza sativa L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!