Effect of cyclic loading on reverse torque values of angled screw channel systems.

J Prosthet Dent

Adjunct Professor, Division of Restorative and Prosthetic Dentistry, The Ohio State University College of Dentistry, Columbus, Ohio; Associate Professor, Department of Reconstructive Dentistry and Gerodontology, University of Bern, School of Dental Medicine, Bern, Switzerland; Associate Professor, Department of Restorative, Preventive, and Pediatric Dentistry, University of Bern, School of Dental Medicine, Bern, Switzerland.

Published: September 2022

Statement Of Problem: The angled screw channel concept has become popular. However, research is lacking as to how reverse torque values of nonaxially tightened implant crowns compare with axially tightened cement-retained crowns restored on angle-correcting abutments when subjected to long-term cyclic loading.

Purpose: The purpose of this in vitro study was to evaluate the ability of different 25-degree angled screw channel hexalobular systems to apply the target torque value on their screws, the effect of cyclic loading on their reverse torque values, and their survival compared with crowns cemented on conventional 0-degree screw channel abutments.

Material And Methods: A total of 28 implants were divided into 4 groups. Twenty-one angled screw channel crowns were fabricated at a 25-degree angle correction by using angled titanium (Ti) bases by 3 manufacturers DY (Dynamic Tibase), DE (AngleBase), and ASC (Angulated Screw Channel) (n=7). The fourth group, UB (Universal Base, Control), had cement-retained crowns with 25-degree custom-milled, angled zirconia abutments that were cemented onto their respective Ti bases (n=7). All implants were embedded in epoxy resin blocks and tightened to manufacturer recommended values: 35 Ncm for ASC, UB, and DE and 25 Ncm for DY. Initial torque values (ITV1) were recorded. After 24 hours, the reverse torque values (24hr-RTV1) were recorded. A new set of screws was then used for each group, and the initial torque values (ITV2) were recorded. Specimens were loaded at 2 Hz for 5 million cycles under a 200-N load, and reverse torque values (RTV2) were recorded. ANOVA (α=.05) was used to compare differences in the means of deviation of initial torque values and means of reverse torque values followed by a Tukey-Kramer post hoc analysis (α=.05). Preload efficiency was calculated for each system (RTV2/ITV2), and a survival analysis was performed by using the Lifetest procedure.

Results: A significant difference in the means of deviation of initial torque values of the groups with 25-degree torque application (DY, DE, and ASC) was found when compared with UB at 0 degrees. ASC and DE had lower initial torque values than UB (P<.001 and P=.003 for ASC ITV1 and ITV2, P<.001 and P=.006 for DE ITV1 and ITV2). A significant difference was found in mean reverse torque values both for after 24 hours and after cyclic loading among all groups (P<.001). A significant difference was found between mean reverse torque values before and after cyclic loading for each group (P<.001). Preload efficiency was 43.8% for DY, 46.8% for DE, 54.2% for ASC, and 48.5% for UB. No significant difference was found in the time-to-failure survival among groups (P>.05).

Conclusions: The hexalobular system of DY delivered comparable initial torque values to its target value at 25 degrees, similar to how UB (control group) delivered at 0 degrees. ASC and DE scored lower initial torque values than their target value compared with UB. The DY abutment, which had a lower manufacturer recommended torque value, had lower reverse torque values compared with those of other groups. Time-to-failure survival of all groups was similar. Fractures at the zirconia to titanium base connection were seen with ASC crowns.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prosdent.2020.12.020DOI Listing

Publication Analysis

Top Keywords

torque values
44
reverse torque
24
screw channel
24
initial torque
20
angled screw
16
torque
13
values
12
cyclic loading
8
loading reverse
8
cement-retained crowns
8

Similar Publications

Load-bearing capacity of screw-retained fixed dental prostheses made of monolithic zirconia on different abutment designs and abutment-free implant connection.

J Dent

January 2025

Senior Research and Teaching Assistant, Clinic of Reconstructive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland. Electronic address:

Objectives: A new abutment-free implant connection allows for direct screwing of FDPs on implants to avoid complications caused by cement rests or screw loosening, which may affect to screw torque and load distribution. The objective of this study was to test the initial (Fi) and final failure (Ff) loads and torque changes of abutment-free monolithic zirconia CAD-CAM fixed dental prostheses (FDPs) compared to titanium FDPs on different abutment designs.

Methods: Three-unit screw-retained FDPs (n=50) on two implants (n=100) were divided into groups (n=10) based on the implant-abutment connection and material of the supra-structure: (1) abutment-free monolithic CAD-CAM zirconia FDP (Abut-free-Zr), (2) abutment-free veneered titanium FDPs (Abut-free-Ti), (3) monolithic zirconia FDPs with titanium base abutments (Zr-Ti-Base), (4) monolithic zirconia FDPs on multi-unit abutments (Zr-MU), (5) veneered titanium FDP on multi-unit abutments (Ti-MU).

View Article and Find Full Text PDF

This article presents a laboratory device by which the course of two signals can be detected using two types of sensors-strain gauges and the DEWESoft DS-NET measuring apparatus. The values of the coefficient of friction of the brake lining when moving against the rotating shell of the brake drum were determined from the physical quantities sensed by tensometric sensors and transformed into electrical quantities. The friction coefficient of the brake lining on the circumference of the rotating brake disc shell can be calculated from the known values measured by the sensors, the design dimensions of the brake, and the revolutions of the rotating parts system.

View Article and Find Full Text PDF

In this study, a fuzzy adaptive impedance control method integrating the backstepping control for the PAM elbow exoskeleton was developed to facilitate robot-assisted rehabilitation tasks. The proposed method uses fuzzy logic to adjust impedance parameters, thereby optimizing user adaptability and reducing interactive torque, which are major limitations of traditional impedance control methods. Furthermore, a repetitive learning algorithm and an adaptive control strategy were incorporated to improve the performance of position accuracy, addressing the time-varying uncertainties and nonlinear disturbances inherent in the exoskeleton.

View Article and Find Full Text PDF

Viral infections are one of the most important causes of morbidity and mortality among patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT). Immunosuppression may lead to the reactivation of latent viruses or the acquisition of new infections, resulting in severe clinical outcomes. The early detection of viral reactivations is crucial for effective patient management and post-transplant care.

View Article and Find Full Text PDF

: The study aimed to assess the dynamics of changes in the torques of derotating and redressing forces acting on the apexes of deformation curvature arches during active, kyphosis-inducing exercises using the D4S device. : The study group included 12 girls aged 9 to 10 years (age X = 9.36, SD = 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!