Although genetic risk scores have been used to predict hypertension, their utility in the clinical setting remains uncertain. Our study comprised N=218 792 FinnGen participants (mean age 58 years, 56% women) and N=22 624 well-phenotyped FINRISK participants (mean age 50 years, 53% women). We used public genome-wide association data to compute polygenic risk scores (PRSs) for systolic and diastolic blood pressure (BP). Using time-to-event analysis, we then assessed (1) the association of BP PRSs with hypertension and cardiovascular disease (CVD) in FinnGen and (2) the improvement in model discrimination when combining BP PRSs with the validated 4- and 10-year clinical risk scores for hypertension and CVD in FINRISK. In FinnGen, compared with having a 20 to 80 percentile range PRS, a PRS in the highest 2.5% conferred 2.3-fold (95% CI, 2.2–2.4) risk of hypertension and 10.6 years (95% CI, 9.9–11.4) earlier hypertension onset. In subgroup analyses, this risk was only 1.6-fold (95% CI, 1.5–1.7) for late-onset hypertension (age ≥55 years) but 2.8-fold (95% CI, 2.6–2.9) for early-onset hypertension (age <55 years). Elevated systolic BP PRS also conferred 1.3-fold (95% CI, 1.2–1.4) risk of CVD and 2.3 years (95% CI, 1.6–3.1) earlier onset. In FINRISK, systolic and diastolic BP PRSs improved clinical risk prediction of hypertension (but not CVD), increasing the C statistics by 0.7% (95% CI, 0.3–1.1). We demonstrate that genetic information improves hypertension risk prediction. BP PRSs together with traditional risk factors could improve prediction of hypertension and particularly early-onset hypertension, which confers substantial CVD risk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8025831 | PMC |
http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.16471 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!