Potential opportunities of thinned clusters in viticulture: a mini review.

J Sci Food Agric

College of Enology, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Northwest A&F University, Yangling, China.

Published: August 2021

Crop thinning is a common practice performed in the vineyard consisting of whole clusters or individual fruits being removed after flowering is attained. Current studies have reported that unripe grape products as verjuice and sour grape sauce contain high content of bioactive compounds such as polyphenols, sugars, organic acids, nitrogenous compounds and sterols. This mini-review overviewed the bioactive components obtained from thinned unripe grapes such as phenolic compounds, sugars, organic acids, minerals, nitrogen compounds and sterols, and their use as antibrowning and whitening agents, natural catalysts, food preservative and food additive. In addition, their beneficial effects for human health also were reviewed, as well as the practices to maximize the extraction of antioxidant compounds. Therefore, revalorizing the waste from this management practice in viticulture can increase the vineyard sustainability and farmers' economic profits. © 2021 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.11170DOI Listing

Publication Analysis

Top Keywords

sugars organic
8
organic acids
8
compounds sterols
8
compounds
5
potential opportunities
4
opportunities thinned
4
thinned clusters
4
clusters viticulture
4
viticulture mini
4
mini review
4

Similar Publications

A sustainable method for the synthesis of 2-deoxy lactones as direct precursors to 2-deoxy sugars via regioselective UV-light-driven dealkyloxylation of carbohydrate-derived lactones is detailed. This catalyst- and additive-free protocol utilizes light irradiation, providing high step economy and functional group compatibility. This environmentally friendly and straightforward approach enhances the synthetic toolbox for 2-deoxy sugars, which is vital in numerous biologically active molecules and drug candidates.

View Article and Find Full Text PDF

An obligately anaerobic, spore-forming sulphate-reducing bacterium, strain SB140, was isolated from a long-term continuous enrichment culture that was inoculated with peat soil from an acidic fen. Cells were immotile, slightly curved rods that stained Gram-negative. The optimum temperature for growth was 28 °C.

View Article and Find Full Text PDF

[The many ways flowers send signals to pollinators].

Biol Aujourdhui

January 2025

Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris), Paris, France - Sorbonne Université, 4 place Jussieu, 75005 Paris, France.

The evolutionary success of angiosperms, which make up more than 95 percent of the world's terrestrial flora, is largely based on their interactions with animal pollinators. Indeed, it is estimated that, on average, 87.5 percent of flowering plants are pollinated by animals.

View Article and Find Full Text PDF

Plant growth promotion via priming with volatile organic compounds emitted from strain EXTN-1.

Front Microbiol

January 2025

Research Institute of International Agriculture, Technology and Information, Hankyong National University, Anseong-si, Republic of Korea.

Volatile organic compounds (VOCs) produced by potential plant growth-promoting rhizobacteria (PGPR) play an important role in plant interactions. However, the mechanisms underlying this phenomenon are not well understood. Our findings show that the influence of VOCs from the PGPR strain (EXTN-1) on tobacco plant growth is dependent on the culture media used.

View Article and Find Full Text PDF

Nitrogen (N) retention is a critical ecosystem function associated with sustainable N supply. Lack of experimental evidence limits our understanding of how grassland N retention can vary with soil acidification. A N-labeling experiment was conducted for 2 years to quantify N retention by soil pathways and plant functional groups across a soil-acidification gradient in a meadow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!