Anti-inflammatory effects of Platycodin D on dextran sulfate sodium (DSS) induced colitis and E. coli Lipopolysaccharide (LPS) induced inflammation.

Int Immunopharmacol

Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China; The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, China, Changchun, China; Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, China; Key Laboratory for Health Biomedical Materials of Jilin Province, Jilin University, Changchun, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang, China. Electronic address:

Published: May 2021

Platycodin D (PLD) is a saponin found in Platycodon grandiflorum, which has been reported to have anti-inflammatory effects. However, the effects of PLD on ulcerative colitis (UC) remain unknown. In this study, PLD showed the potential to reduce inflammation, ameliorate intestinal damage, and maintain intestinal integrity in DSS-induced colitis. However, the beneficial effect of PLD was reduced when macrophages were depleted, indicating the key role of macrophages in the beneficial effect of PLD in DSS-induced colitis. Meanwhile, we found that PLD inhibited the expression of M1 markers and promoted the expression of M2 markers in colon. Similarly, we found PLD significantly attenuated the levels of pro-inflammatory cytokines, increased the level of anti-inflammatory cytokine and altered macrophage proportions in LPS-stimulated RAW 264.7 cells in vitro. Moreover, treating LPS-stimulated RAW 264.7 cells with PLD increased the activation of the PI3K/Akt signaling pathway and decreased activation of NF-κB pathway. Furthermore, we found that the anti-inflammatory and macrophage polarization regulatory effects of PLD was Adenosine 5'-monophosphate-activated protein kinase (AMPK)-dependent. These results indicate that PLD attenuates DSS-induced colitis and LPS-induced inflammation, and the mechanism behind the phenomenon may be regulating macrophage polarization via activation of AMPK. Our study provides a theoretical basis for PLD to be used as a potential treatment of colitis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2021.107474DOI Listing

Publication Analysis

Top Keywords

dss-induced colitis
12
pld
11
anti-inflammatory effects
8
effects pld
8
pld potential
8
beneficial pld
8
expression markers
8
lps-stimulated raw
8
raw 2647
8
2647 cells
8

Similar Publications

Selenium-Enriched Lactiplantibacillus plantarum ZZU 8-12 Regulates Intestinal Microbiota and Inhibits Acute Liver Injury.

Probiotics Antimicrob Proteins

January 2025

Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.

Intake of certain Lactiplantibacillus strains was recognized as a potential strategy for acute liver injury (ALI) prevention. This study is aimed at developing a selenium-enriched Lactiplantibacillus strain-based ALI prevention strategy. L.

View Article and Find Full Text PDF

Curcuminoids, found in turmeric ( L.), include curcumin (CUR), demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC). Although CUR and DMC are well-studied, the anti-inflammatory effects of BDMC remain less explored.

View Article and Find Full Text PDF

C9orf72 Alleviates DSS‑Induced Ulcerative Colitis via the cGAS-STING Pathway.

Immun Inflamm Dis

January 2025

Department of Health Care, Qingdao Municipal Hospital, Qingdao, Shandong, China.

Purpose: C9orf72 deficiency contributes to severe inflammation in mice. Ulcerative colitis (UC) is a chronic inflammatory disorder with the shortage of clinical success. However, whether C9orf72 is involved in the progression of UC is not fully understood.

View Article and Find Full Text PDF

MC-LR induces and exacerbates Colitis in mice through the JAK1/STAT3 pathway.

J Toxicol Environ Health A

January 2025

Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China.

Inflammatory bowel disease (IBD) is a complex gastrointestinal disorder attributed to genetic and environmental factors. Microcystin-leucine-arginine (MC-LR) is an environmental toxin that accumulates in the gut and produces intestinal damage. The aim of this study was to investigate the effects of exposure to MC-LR on development and progression of IBD as well examine the underlying mechanisms of microcystin-initiated tissue damage.

View Article and Find Full Text PDF

Inflammatory bowel disease is a collection of intestinal disorders that cause inflammation in the digestive tract. Prolonged inflammation in the gastrointestinal tract is a major risk factor for colorectal cancer. The objective of this study was to fucus on gene expression levels of (KRT-14; associated with epithelial cell integrity) and enhancer of zeste homolog-1 (EZH-2; involved in cellular proliferation) in a IBD rat model in order to rule out impact of nutraceuticals (pumpkin seed oil; PSO) as a complementary approach to conventional treatments of IBD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!