The European eel (Anguilla anguilla) has attracted scientific inquiry for centuries due to its singular biological traits. Within the European Union, glass eel fisheries have declined sharply since 1980, from up to 2000 t (t) to 62.2 t in 2018, placing wild populations under higher risk of extinction. Among the major causes of glass eels collapse, climate change has become a growing worldwide issue, specifically ocean warming and acidification, but, to our knowledge, data on physiological and biochemical responses of glass eels to these stressors is limited. Within this context, we selected some representative biomarkers [e.g. glutathione peroxidase (GPx), catalase (CAT), total antioxidant capacity (TAC), heat shock proteins (HSP70), ubiquitin (Ub) and DNA damage] to study physiological responses of the European glass eel under distinct laboratory-climate change scenarios, such as increased water temperature (+ 4 °C) and pH reduction (- 0.4 units), for 12 weeks. Overall, the antioxidant enzymatic machinery was impaired, both in the muscle and viscera, manifested by significant changes in CAT, GPx and TAC. Heat shock response varied differently between tissues, increasing with temperature in the muscle, but not in the viscera, and decreasing in both tissues under acidification. The inability of HSP to maintain functional protein conformation was responsible for boosting the production of Ub, particularly under warming and acidification, as sole stressors. The overproduction of reactive oxygen species (ROS), either elicited by warming - due to increased metabolic demand - or acidification - through H interaction with O, generating HO - overwhelmed defense mechanisms, causing oxidative stress and consequently leading to protein and DNA damage. Our results emphasize the vulnerability of eels' early life stages to climate change, with potential cascading consequences to adult stocks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.145499 | DOI Listing |
Sci Rep
January 2025
Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Chiba, Japan.
Migration routes and the depth patterns of anguillid eel larvae migrating long distances from spawning grounds in the ocean remain poorly understood. We used otolith stable isotope analysis to study the oceanic migrations of anguillid eels by reconstructing experienced water temperature histories of larvae. The otolith stable oxygen isotopes (δO) of recruited Anguilla japonica glass eels were analyzed to assess the relationship with the experienced water temperature of the early larval stage in laboratory experiments.
View Article and Find Full Text PDFSci Total Environ
January 2025
Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, Spain.
European eel is considered a "critically endangered" species due to its population decline (c.a. 98 %) in all European waters, primarily because human activities.
View Article and Find Full Text PDFSci Rep
January 2025
Thünen Institute of Fisheries Ecology, Federal Research Institute for Rural Areas, Forestry and Fisheries, 27572, Bremerhaven, Germany.
Numbers of European glass eels (Anguilla anguilla) monitored along the Atlantic and Mediterranean coasts of Europe currently serve as the main stock indicator in assessment of this critically endangered species. Spawning, however, takes place exclusively in the Sargasso Sea, several thousand kilometers away. The beginning of its complex lifecycle is characterized by a distant and lengthy larval drift, before the young-of-the-year reach the monitoring stations at the European coasts.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2025
School of Biotechnology, Mila University, No 1, MIU Boulevard, Putra Nilai, Nilai 71800, Malaysia.
This study aims to evaluate the rice husk (EE-R) and lemongrass (EE-L) derived-eco-enzymes (EE) as alternatives to chemical-based disinfectants. The EE-R and EE-L's antimicrobial activity were tested against Pseudomonas aeruginosa, Salmonella Typhimurium, and Staphylococcus aureus using a broth microdilution method. The antibiofilm activities of EE were determined using crystal violet staining.
View Article and Find Full Text PDFZookeys
December 2024
Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan National Taiwan University Taipei Taiwan.
Yilan, Taiwan is the first place in East Asia where freshwater glass eels, the juvenile stage of species, arrive by ocean currents. We collected glass eels by fyke net in Lanyang River estuary twice a month from July 2010 to November 2023. By morphological examination and sequencing of the mitochondrial cytochrome b gene, we identified seven species of .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!